Труды КНЦ (Естественные и гуманитарные науки вып.2/2023(2))

2. Mingalev I. V., Fedotova E. A. and Orlov K. G. Postroenie parametrizacij molekuljarnogo pogloshhenija v nizhnej i srednej atmosfere Zemli v IK diapazone [Parameterization of the Infrared Molecular Absorption in the Earth’s Lower and Middle Atmosphere]. Optika atmosfery i okeana [Atmospheric and Oceanic Optics], 2018, vol. 31, no. 06, pp. 582-589. (In Russ.). 3. Rozinkina I. A., Astakhova E. D., Tsvetkov V. I., et al. Razvitie sistem determinirovannogo i ansamblevogo chislennogo prognozirovanija pogody na osnove global'noj spektral'noj modeli atmosfery Gidrometcentra Rossii v 2009-2019 gg. [Development of deterministic and ensemble numerical weather prediction systems based on the global spectral atmospheric model ofthe Hydrometcentre ofRussia in 2009-2019]. Gidrometeorologicheskie issledovanija iprognozy [Hydrometeorological Research and Forecasting], 2019, vol. 4, no. 374, pp. 54-76 (In Russ.). 4. Tolstykh M. A., Geleyn J. F., Volodin E. M., et al. Razrabotka mnogomasshtabnoj versii global'noj modeli atmosfery PLAV [Development of the multiscale version of the SL-AV global atmosphere model]. Meteorologija i gidrologija [Russianmeteorology and hydrology], 2015, no. 6, pp. 25-35 (InRuss.). 5. Tolstykh M. A. Global'nye modeli atmosfery: sovremennoe sostojanie i perspektivy razvitija [Global atmospheric models: current state and development prospects]. Trudy gidrometeorologicheskogo nauchno-issledovatel’skogo centra Rossijskoj Federacii [Proceedings of the Hydrometeorological Research Center of the Russian Federation], 2016, no. 359, pp. 5-32. (In Russ.). 6. Tolstykh M. A., Fadeev R. Yu., Shashkin V. V. et al. Razvitie global'noj polulagranzhevoj modeli atmosfery PLAV v 2009-2019 gg. [Development of SL-AV global semi-Lagrangian atmosphere model in 2009-2019]. Gidrometeorologicheskie issledovanija iprognozy [Hydrometeorological Research and Forecasting], 2019, vol. 4, no. 374, pp. 77-91 (In Russ.). 7. Chetverushkin B. N., Mingalev I. V., Orlov K. G., Chechetkin V. M., Mingalev V. S., Mingalev O. V. Gazodinamicheskaja model' obshhej cirkuljacii nizhnej i srednej atmosfery Zemli [Gas-Dynamic General Circulation Model of the Lower and Middle Atmosphere of the Earth]. Matematicheskoe modelirovanie [Math. Models Comput. Simul], 2018, vol. 10, no. 2, pp. 176-185 (In Russ.). 8. Chetverushkin B. N., Mingalev I. V., Chechetkin V. M., Orlov K. G., Fedotova E. A., Mingalev V. S., and Mingalev O. V. Raschet sobstvennogo izluchenija atmosfery v modeli obshhej cirkuljacii nizhnej i srednej atmosfery Zemli [Calculating the Natural Atmospheric Radiation Using the General Circulation Model of the Earth’s Lower and Middle Atmosphere]. Matematicheskoe modelirovanie [Mathematical Models and Computer Simulations], 2020, vol. 32, no. 11, pp. 29-46 (In Russ.). 9. Courtier P., Freydier C., GeleynJ.-F., Rabier F., Rochas M. The ARPEGE project at Meteo-France, Procs. of the ECMWF seminar on numerical methods in atmospheric models 1991, Reading, UK: 1992, vol. 2, pp. 192-208. 10. Donner L., Wyman B. L., Hemler R. S., et al. The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL Global Coupled Model CM3. J. Climate, 2011, vol. 24, pp. 3484-3519. 11. Ek M. B. Implementation of Noah land surface model advances in National Centers for Environmental Prediction Operational Mesoscale Eta model, et al. J. Geoph. Res., 2003, vol. 108, no. D22, 8851. 12. Gassmann A. A global hexagonal C-grid non-hydrostatic dynamical core (ICON-IAP) designed for energetic consistency. Q. J. Roy. Meteorol. Soc., 2013, vol. 139, pp. 152-175. 13. Hortal M. Aspects of the numerics of the ECMWF model. Recent developments in numerical methods for atmospheric modelling. Procs. of the ECMWF Seminar 7-11 September 1998, Reading, UK: 1999, pp. 50. 14. Muthers S., Ane J. G., Stenke A. et al. The coupled atmosphere-chemistry-ocean model SOCOL-MPIO. Geosci. Model Dev. Discuss, 2014, vol. 7, pp. 3013-3084. 15. Staniforth A., Melvin T., Wood. N. Gung Ho. A new dynamical core for the Unified Model. ECMWF Seminar on Numerical Methods for Atmosphere and Ocean Modelling, 2-5 September 2013, ECMWF, Reading, UK, 2014, pp. 15-30. 16. Wan H., Giorgetta M. A., Zangl G., Restelli M., Majewski D., Bonaventura L., Frohlich K., Reinert D., Ripodas P., Kornblueh L., Forstner J. The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids. Part 1: Formulation and performance of the baseline version. Geosci, Model Dev., 2013, vol. 6, pp. 735-763. 17. Zangl G., Reinert D., Ripodas P., Baldauf M. The ICON (ICO sahedral non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Q. J. Roy. Meteorol. Soc., 2015, vol. 141, pp. 563-579. Информация об авторах К. Г.Орлов — кандидат физико-математических наук, заместитель директора по научной работе; И. В. Мингалев — доктор физико-математических наук, и. о. директора Полярного геофизического института; Труды Кольского научного центра РАН. Серия: Естественные и гуманитарные науки. 2023. Т. 2, № 2. С. 86-93. Transactions of the Kola Science Centre of RAS. Series: Natural Sciences and Humanities. 2023. Vol. 2, No. 2. P. 86-93. © Орлов К. Г., Мингалев И. В., Федотова Е. А., Мингалев В. С., 2023 92

RkJQdWJsaXNoZXIy MTUzNzYz