Труды КНЦ (Технические науки вып.2/2023(14))

Труды Кольского научного центра РАН. Серия: Технические науки. 2023. Т. 14, № 2. С. 97-101. Transactions of the Kola Science Centre of RAS. Series: Engineering Sciences. 2023. Vol. 14, No. 2. P. 97-101. Выводы Таким образом, исследован процесс восстановления образцов композиционного материала на основе ГО и солей металлов в сверхкритическом изопропаноле. Показано, что исходные композиты представляют собой пленки ГО, на поверхности которых находятся кристаллиты солей. Полученные материалы охарактеризованы при помощи РФА и СЭМ. После обработки в сверхкритическом флюиде происходит образование ВГО, содержащего наночастицы металлов или оксидов металлов в своей структуре. Полученные результаты могут быть использованы для создания «умных» материалов и покрытий, сочетающих в себе проводящие свойства ВГО и металлических наночастиц. Список источников 1. Shahadat M., Teng T. T., Rafatullah M., Arshad M. Titanium-based nanocomposite materials: A review of recent advances and perspectives // Colloids and Surfaces B: Biointerfaces. 2015. V. 126. P. 121-137. https://doi.org/10.1016/j.colsurfb.2014.11.049 2. Agrawal A., Sharma A., Awasthi K. K., Awasthi A. Metal oxides nanocomposite membrane for biofouling mitigation in wastewater treatment // Materials Today Chemistry. 2021. V. 21. P. 100532. https://doi.org/10.1016/j.mtchem.2021.100532 3. Yang J., Li Z., Wang Z., Yuan S., Li Y., Zhao W., Zhang, X. 2D Material Based Thin-Film Nanocomposite Membranes for Water Treatment. AdvancedMaterials Technologies // Adv. Mater. Technol. 2021. P. 2000862. https://doi.org/10.1002/admt.202000862 4. Alabi A., Cseri L., Al Hajaj A., Szekely G., Budd P., Zou L. Electrostatically-coupled graphene oxide nanocomposite cation exchange membrane // Journal ofMembrane Science. 2020. V. 594. P. 117457. https://doi.org/10.1016/j.memsci.2019.117457 5. Sakthivel B., Nammalvar G. Selective ammonia sensor based on copper oxide/reduced graphene oxide nanocomposite // Journal of Alloys and Compounds. 2019. V. 88. P. 422-428. https://doi.org/10.1016/j.jallcom.2019.02.245 6. Dimiev A. M., Alemany L. B., Tour J. M. Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model // ACS Nano. 2013. V. 7, № 1. P. 576-588. https://doi.org/10.1021/nn3047378 7. Smith A. T., LaChance A. M., Zeng S., Liu B., Sun L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites // Nano Materials Science. 2019. V. 1, № 1. P. 31-47. https://doi.org/10.1016/j.nanoms.2019.02.004 8. Ioni Y., Groshkova Y., Buslaeva E., Gubin S. Graphene Oxide as a Polymer // Nanotechnologies in Russia. 2020. V. 15, № 2. P. 163-168. https://doi.org/10.1134/S1995078020020111 9. Ioni Y., Groshkova Y., Buslaeva E., Gubin S. Change in the Electrical Conductivity of Graphene Oxide Film after Treatment with Supercritical Fluids (iso-C3H70H, Н 2 О) // Russian Journal of Inorganic Chemistry. 2021. V. 66, № 6. P. 950-955. https://doi.org/10.1134/S0036023621060115 10. Svalova A., Brusko V., Sultanova E., Kirsanova M., Khamidullin T., Vakhitov I., Dimiev A. M. Individual Ni atoms on reduced graphene oxide as efficient catalytic system for reduction of 4-nitrophenol // Applied Surface Science. 2021. V. 565. P. 150503. https://doi.org/10.1016/j.apsusc.2021.15050 11. Ioni Y., Chentsov S., Sapkov I., Rustamova E., Gubin S. Preparation and Characterization of Graphene Oxide Films with Metal Salts // Russian Journal of Inorganic Chemistry. 2022. V. 67, № 11. P. 1711-1717 https://doi.org/10.1134/S0036023622601076 12. Kotsyubynsky V. O., Boychuk V. M., Budzulyak I. M., Rachiy B. I., Zapukhlyak R. I., Hodlevska M. A., Malakhov, A. A. Structural properties of graphene oxide materials synthesized accordingly to hummers, tour and modified methods: XRD and Raman study // Physics and Chemistry of Solid State. 2021. V. 22, № 1. P. 31-38. https://doi.org/10.15330/PCSS.22.1.31-38 13. Xin L., Zhang Z., Wang Z., Qi J., Li W. Carbon supported Ag nanoparticles as high performance cathode catalyst for H 2 /O 2 anion exchange membrane fuel cell // Frontiers in Chemistry. 2013. V. 1. https://doi.org/10.3389/fchem.2013.00016 References 1. Shahadat M., Teng T. T., Rafatullah M., Arshad M. Titanium-based nanocomposite materials: A review of recent advances and perspectives. Colloids and SurfacesB: Biointerfaces, 2015, vol. 126, pp.121-137. https://doi.org/10.1016/j. colsurfb.2014.11.049 2. Agrawal A., Sharma A., Awasthi K. K., Awasthi A. Metal oxides nanocomposite membrane for biofouling mitigation in wastewater treatment. Materials Today Chemistry, 2021, vol. 21, pp. 100532. https://doi.org/10.1016/j.mtchem.2021.100532 3. Yang J., Li Z., Wang Z., Yuan S., Li Y., Zhao W., Zhang, X. 2D Material Based Thin-Film Nanocomposite Membranes for Water Treatment. AdvancedMaterials Technologies. Adv. Mater. Technol., 2021, pp. 2000862. https://doi.org/10.1002/admt.202000862 4. Alabi A., Cseri L., Al Hajaj A., Szekely G., Budd P., Zou L. Electrostatically-coupled graphene oxide nanocomposite cation exchange membrane. Journal ofMembrane Science, 2020, vol. 594, pp. 117457. https://doi.org/10.1016/j.memsci.2019.117457 5. Sakthivel B., Nammalvar G. Selective ammonia sensor based on copper oxide/reduced graphene oxide nanocomposite. Journal o fAlloys and Compounds, 2019, vol. 788, pp. 422-428. https://doi.org/10.1016/j.jallcom.2019.02.245 6. Dimiev A. M., Alemany L. B., Tour, J. M. Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model. ACS Nano, 2013, vol. 7, no. 1, pp. 576-588. https://doi.org/10.1021/nn3047378 7. Smith A. T., LaChance A. M., Zeng S., Liu B., Sun L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. NanoMaterials Science, 2019, vol. 1, no 1, pp. 31-47. https://doi.org/10.1016/j.nanoms.2019.02.004 8. Ioni Y., Groshkova Y., Buslaeva E., Gubin S. Graphene Oxide as a Polymer. Nanotechnologies in Russia, 2020, vol. 15, no. 2, pp.163-168. https://doi.org/10.1134/S 1995078020020111 9. Ioni Y., Groshkova Y., Buslaeva E., Gubin S. Change in the Electrical Conductivity of Graphene Oxide Film after Treatment with Supercritical Fluids (iso-СзН70Н, Н 2 О). Russian Journal o f Inorganic Chemistry, 2021, vol. 66, no. 6, pp. 950-955. https://doi.org/10.1134/S0036023621060115 10. Svalova A., Brusko V., Sultanova E., Kirsanova M., Khamidullin T., Vakhitov I., Dimiev A. M. Individual Ni atoms on reduced graphene oxide as efficient catalytic system for reduction of4-nitrophenol. Applied Surface Science, 2021, vol. 565, pp. 150503. https://doi.org/10.1016/j.apsusc.2021.15050 © Иони Ю. В., Рассказов И. Е., 2023 100

RkJQdWJsaXNoZXIy MTUzNzYz