Труды КНЦ (Технические науки вып.1/2023(14))
15. Cherrier J., Burnett W. C., LaRock P. A. Uptake of polonium and sulfur by bacteria // Geamicrobiology Journal. 1995. Vol. 13, No.2. P. 103-115. doi:10.1080/01490459509378009 16. Buller A. R., van Roye P., Murciano-Calles J., Arnold F.H. Tryptophan Synthase Uses an Atypical Mechanism to Achieve Substrate Specificity // Biochemistry. 2016. Vol. 55. P. 7043-7046. doi:10.1021/acs.biochem.6b01127 17. Xu Z., Sun Z., Li S., Xu Z., Cao C., Xu Z., Feng X., Xu H. Systematic unravelling of the biosynthesis of poly (L-diaminopropionic acid) in Streptomyces albulus PD-1 // Sci. Rep. 2015. Vol. 5, No. 17400. P. 1-10. doi: 10.1038/srep17400 18. Sadiq M. F., Owais W. M. Mutagenicity of sodium azide and its metabolite azidoalanine in Drosophila melanogaster // Mutation Research. 2000. Vol. 469, No. 2. P. 253-257. doi:10.1016/S1383-5718(00)00079-6 19. O’Connor L. J., Mistry I. N., Collins S. L., Folkes L. K., Brown G., Conway S. J., Hammond E. M. CYP450 Enzymes Effect Oxygen-Dependent Reduction of Azide- Based Fluorogenic Dyes // ACS Cent. Sci. 2017. Vol. 3, No. 1. P. 20-30. doi:10.1021/acscentsci.6b00276 20. Willsey G. G., Wargo M. J. Sarcosine Catabolism in Pseudomonas aeruginosa Is Transcriptionally Regulated by SouR // J Bacteriol. 2016. Vol. 198, No. 2. P. 301-310. doi:10.1128/JB.00739-15 21. Faroon O., Roney N., Taylor J., Ashizawa A., Lumkin M. H., Plewak D. Acrolein health effects // Toxicology and industrial health. 2008. Vol. 24, No. 7. P. 447-490. doi:10.1177/0748233708094188 22. Nordone A. J., Dotson T. A., Kovacs M. F., Doane R., Biever R. C. Metabolism of [14C] acrolein (magnacide h® herbicide): nature and magnitude of residues in freshwater fish and shellfish // Environmental Toxicology and Chemistry. 1998. Vol. 17, No. 2. P. 276-281. doi:10.1002/etc.5620170220 23. Nagasawa T., Yamada H. Enzymatic Transformations of 3-Chloroalanine into Useful Amino Acids // Applied Biochemistry and Biotechnology. 1986. Vol. 13, No. 2. P. 147-165. doi:10.1007/BF02798908 24. Wang Y., Liu A. Carbon-fluorine bond cleavage mediated by metalloenzymes // Chem. Soc. Rev. 2020. Vol. 49, No. 14. P. 4906-4925. doi: 10.1039/C9CS00740G 25. Geeson M. B., Cummins C. C. Let’s Make White Phosphorus Obsolete // ACS Cent. Sci. 2020. Vol. 6, No. 6. P. 848-860. doi:10.1021/acscentsci.0c00332 26. Walsh M. E., Collins C. M., Racine C. Persistence of White Phosphorus Particles in Sediment // Cold Regions Research and Engineering Lab Hanover NH. 1995. 51 p. 27. Barber J. C. Processes for the disposal and recovery of phossy water // United States Patent 5549878, 1996. 28. Mindubaev A. Z., Babynin E. V., Bedeeva E. K., Minzanova S. T., Mironova L. G., Akosah Y. A. Biological Degradation of Yellow (White) Phosphorus, a Compound of First Class Hazard // Russian Journal of Inorganic Chemistry. 2021. Vol. 66, No. 8. P. 1239-1244. doi:10.1134/S0036023621080155 29. Mindubaev A. Z., Kuznetsova S. V., Evtyugin V. G., Daminova A. G., Grigoryeva T. V., Romanova Y. D., Romanova V. A., Babaev V. M., BuzyurovaD. N., BabyninE. V., BadeevaE. K., Minzanova S. T., Mironova L. G. Effect of White Phosphorus on the Survival, Cellular Morphology, and Proteome of Aspergillus niger // Applied Biochemistry and Microbiology. 2020. Vol. 56, No. 2. P. 194-201. doi:10.1134/S0003683820020118 30. Singh B. K., Walker A. Microbial degradation of organophosphorus compounds // FEMSMicrobiology Reviews. 2006. Vol. 30, No. 3. P. 428-471. doi:10.1111/j.1574-6976.2006.00018.x References 1. Meckenstock R. U., Elsner M., Griebler C., Lueders T., Stumpp C., Aamand J., Agathos S. N., Albrechtsen H.-J., Bastiaens L., Bjerg P.L., Boon N., Dejonghe W., Huang W. E., Schmidt S. I., Smolders E., S 0 rensen S. R., Springael D., van Breukelen B. M. Biodegradation: updating the concepts of control for microbial cleanup in contaminated aquifers. Environmental Science & Technology, 2015, Vol. 49, Issue 12, pp. 7073-7081. doi:10.1021/acs.est.5b00715 2. Sirajuddin S., Rosenzweig A. C. Enzymatic Oxidation of Methane. Biochemistry, 2015, Vol. 54, No. 14, pp. 2283-2294. doi:10.1021/acs.biochem.5b00198 3. Valentine J. S., Greenberg A., Foote C. S., Liebman J. F. Active Oxygen in Biochemistry. Springer, 1995, 463 p. 4. Kovalevsky A. Y., Hanson L., Fisher S. Z., Mustyakimov M., Mason S. A., Forsyth V. T., Blakeley M. P., Keen D. A., Wagner T., Carrell H. L., Katz A. K., Glusker J. P., Langan P. Metal Ion Roles and the Movement of Hydrogen during Reaction Catalyzed by D-Xylose Isomerase: A Joint X-Ray and Neutron Diffraction Study. Structure, 2010, Vol. 18, No. 6, pp. 688-699. doi:10.1016/j.str.2010.03.011 5. Yurimoto H., Kato N., Sakai Y. Assimilation, Dissimilation, and Detoxification of Formaldehyde, a Central Metabolic Intermediate of Methylotrophic Metabolism. The Chemical Record , 2005, Vol. 5, No. 6, pp. 367-375. doi: 10.1002/tcr.20056 6. Koga Y., Morii H. Biosynthesis of Ether-Type Polar Lipids in Archaea and Evolutionary Considerations. Microbiology andMolecular Biology Reviews, 2007, Vol. 71, No. 1, pp. 97-120. doi:10.1128/MMBR.00033-06 Труды Кольского научного центра РАН. Серия: Технические науки. 2023. Т. 14, № 1. С. 171-179. Transactions of the Kala Science Centre of RAS. Series: Engineering Sciences. 2023. Vol. 14, No. 1. P. 171-179. © Миндубаев А. З., Бабынин Э. В., Минзанова С. Т., Миронова Л. Г., Бадеева Е. К., 2023 177
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz