Труды КНЦ (Технические науки вып.1/2023(14))

Список источников 1. Duan C., Huang J., SullivanN., O’Hayre R. Proton-conducting oxides for energy conversion and storage // Applied Physics Reviews. 2020. V. 7. 2. Colomban Ph. Proton conductors and their applications: A tentative historical overview of the early researches // Solid State Ionics. 2019. V. 334. P. 125-144. 3. Medvedev D. Trends in research and development of protonic ceramic electrolysis cells // International Journal of Hydrogen Energy. 2019. V. 44, № 49. P. 26711-26740. 4. Shim J.H. Ceramics breakthrough // Nature Energy. 2018. V. 3. P. 168-169. 5. Meng, Y., Gao, J., Zhao, Z., et al. Review: recent progress in low-temperature proton-conducting ceramics // J. Mater. Sci. 2019. V. 54. P. 9291-9312. 6. Kim, J., Sengodan, S., Kim, S., et al. Proton conducting oxides: A review of materials and applications for renewable energy conversion and storage // Renew. Sustain. Energy Rev. 2019. V. 109. P. 606-618. 7. Hossain S., Abdalla A. M., Jamain S. N. B., et al. A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells // Renewable Sustainable Energy Reviews. 2017. V. 76. P. 750-764. 8. Iwahara, H., Esaka, T., Uchida, H., Maeda, N. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. // Solid State Ion. 1981. V. 3-4, P. 359-363. 9. Iwahara H., Uchida H., Maeda N. High temperature fuel and steam electrolysis cells using proton conductive solid electrolytes // J. Power Sources. 1982. V. 7. P. 293-301. 10. Iwahara, H., Uchida, H., Tanaka, S. High temperature type proton conductors based on SrCeO3 and its application to solid electrolyte fuel cells // Solid State Ion. 1983. V. 9-10. P. 1021-1025. 11. Irvine J. et al. Roadmap on inorganic perovskites for energy applications // J. Phys. Energy. 2021. V. 3. P. 031502. 12. Hossain M. K., Chanda R., El-Denglawey A., et al. Recent progress in barium zirconate proton conductors for electrochemical hydrogen device applications: A review // Ceram. Int. 2021. V. 47. P. 23725-23748. 13. Tarasova N., Animitsa I. Materials AIILnInO4 with Ruddlesden-Popper Structure for Electrochemical Applications: Relationship between Ion (Oxygen-Ion, Proton) Conductivity, Water Uptake, and Structural Changes // Materials. 2022. V. 15. P. 114. 14. Tarasova N., Bedarkova A. Advanced proton-conducting ceramics based on layered perovskite BaLaInO 4 for energy conversion technologies and devices // Materials. 2022. V. 15. P. 6841. 15. Tarasova N., Bedarkova A., Animitsa I. Proton transport in the gadolinium-doped layered perovskite BaLaInO4 // Materials. 2022. V. 15. P. 7351. 16. Tarasova N., Bedarkova A., Animitsa I. Novel Pr-Doped BaLaInO4 Ceramic Material with Layered Structure for Proton-Conducting Electrochemical Devices // Applied Sciences. 2023. V. 13. P. 1328. 17. Tarasova N. A., Galisheva A. O., Animitsa, I. E. Lebedeva E. L. Oxygen-Ion and Proton Transport in Sc-Doped Layered Perovskite BaLaInO4 // Russian Journal ofElectrochemistry. 2021. V. 57. P. 1008-1014. 18. Tarasova N., Galisheva A., Animitsa I., et al. Novel proton-conducting layered perovskite based on BaLaInO4 with two different cations in B-sublattice: Synthesis, hydration, ionic (O2+, H-) conductivity // International journal of hydrogen energy. 2022. V. 47. P. 1897-18982. References 1. Duan C., Huang J., Sullivan N., O’Hayre R. Proton-conducting oxides for energy conversion and storage. Applied Physics Reviews, 2020, vol. 7. 2. Colomban Ph. Proton conductors and their applications: A tentative historical overview of the early researches. Solid State Ionics, 2019, vol. 334, pp.125-144. 3. Medvedev D. Trends in research and development of protonic ceramic electrolysis cells. International Journal o fHydrogen Energy, 2019, vol. 44, no. 49, pp. 26711-26740. 4. Shim J. H. Ceramics breakthrough. Nature Energy, 2018, vol. 3, pp. 168-169. 5. Meng, Y., Gao, J., Zhao, Z. et al. Review: recent progress in low-temperature proton-conducting ceramics. J. Mater. Sci, 2019, vol. 54, pp. 9291-9312. 6. Kim, J., Sengodan, S., Kim, S., et al. Proton conducting oxides: A review of materials and applications for renewable energy conversion and storage. Renew. Sustain. Energy Rev., 2019, vol. 109, pp. 606-618. 7. Hossain S., Abdalla A. M., Jamain S. N. B., et al. A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renew. Sustain. Energy Rev., 2017, vol. 76, pp. 750-764. 8. Iwahara H., Esaka T., Uchida H., Maeda N. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ion, 1981, vol. 3-4, pp. 359-363. 9. Iwahara H., Uchida H., Maeda N. High temperature fuel and steam electrolysis cells using proton conductive solid electrolytes. J. Power Sources, 1982, vol. 7, pp. 293-301. Труды Кольского научного центра РАН. Серия: Технические науки. 2023. Т. 14, № 1. С. 105-109. Transactions of the Коіа Science Centre of RAS. Series: Engineering Sciences. 2023. Vol. 14, No. 1. P. 105-109. © Егорова А. В., Белова К. Г., Бедарькова А. О., Анимица И. Е., Тарасова Н. А., 2023 108

RkJQdWJsaXNoZXIy MTUzNzYz