Труды КНЦ (Технические науки) 2/2022(13).
30. Lopez P., Romary L. HUMB: Automatic Key Term Extraction from Scientific Articles in GROBID // Proceedings of the 5th International Workshop on Semantic Evaluation SemEval 2010. Uppsala, Sweden: Association for Computational Linguistics, 2010. HUMB. P. 248-251. 31. Home — GROBID Documentation [Электронный ресурс]. URL: https://grobid.readthedocs.io/en/latest/ (дата обращения: 10.10.2022). 32. Lopez P., Romary L. GRISP: A Massive Multilingual Terminological Database for Scientific and Technical Domains. P. 9. 33. More Data, More Relations, More Context and More Openness: A Review and Outlook for Relation Extraction. More Data, More Relations, More Context and More Openness / X. Han [et al.] // arXiv:2004.03186 [cs]. arXiv, 2020. 34. Rule-Based Extraction of Spatial Relations in Natural Language Text / C. Zhang [et al.] // 2009 International Conference on Computational Intelligence and Software Engineering 2009 International Conference on Computational Intelligence and Software Engineering. 2009. P. 1-4. 35. GATE.ac.uk— index.html [Электронный ресурс]. URL: https://gate.ac.uk/ (дата обращения: 19.10.2022). 36. Cunningham H., Maynard D., Tablan V. JAPE: a Java Annotation Patterns Engine. 2000. JAPE. 37. Nebhi K. A Rule-Based Relation Extraction System using DBpedia and Syntactic Parsing // Proceedings of the NLP-DBPEDIA-2013 Workshop co-located with the 12th International Semantic Web Conference (ISWC 2013). 2013. 38. Wehrli E. Fips, A “Deep” Linguistic Multilingual Parser // ACL 2007 Workshop on Deep Linguistic Processing. Prague, Czech Republic: Association for Computational Linguistics, 2007. P. 120-127. 39. Huffman S. B. Learning information extraction patterns from examples // Proceedings of the 1995 IJCAI Workshop on New Approaches to Learning for Natural Language Processing. 1995. 40. Sanderson M., Croft W. Deriving Concept Hierarchies from Text // Annual ACM Conference on Research and Development in Information Retrieval. 1999. 41. Heist N., Hertlich S., Paulheim H. Language-Agnostic Relation Extraction from Abstracts in Wikis // Information. 2018. Vol. 9, № 4. P. 75. 42. Kumar S. A Survey of Deep Learning Methods for Relation Extraction. 2017. 43. Nasar Z., Jaffry S. W., Malik M. Named Entity Recognition and Relation Extraction: State of the Art // ACM Computing Surveys. 2021. Vol. 54. Named Entity Recognition and Relation Extraction. 44. A neural network-based joint learning approach for biomedical entity and relation extraction from biomedical literature / L. Luo [et al.] // Journal of Biomedical Informatics. 2020. Vol. 103. P. 103384. 45. Joint Learning with Pre-trained Transformer on Named Entity Recognition and Relation Extraction Tasks for Clinical Analytics / M. Chen [et al.] // Proceedings of the 3rd Clinical Natural Language Processing Workshop Clinical NLP-EMNLP 2020. Online: Association for Computational Linguistics, 2020. P. 234-242. 46. Devisree V., Raj P. C. R. A Hybrid Approach to Relationship Extraction from Stories: International Conference on Emerging Trends in Engineering, Science and Technology (ICETEST — 2015) // Procedia Technology. 2016. Vol. 24. P. 1499-1506. References 1. Musaev A. A., Grigoriev D. A. Extracting knowledge from text messages: overview and state-of-the-art. Computer Research andModeling, 2021, vol. 13, no. 6, pp. 1291-1315. 2. Yang Y, Wu Z, Yang Y, Lian S, Guo F, Wang Z. A Survey of Information Extraction Based on Deep Learning. Applied Sciences, 2022, vol. 12, no. 19, pp. 9691. 3. Dikovickij V. V., Shishaev M. G., Pimeshkov V. K. Metod avtomatizirovannogo izvlechenija ponjatij i paradigmaticheskih otnoshenij tezaurusa iz tekstov na estestvennomjazyke na baze leksiko-sintaksicheskih shablonov [Method of automated extraction of concepts and paradigmatic relations of thesaurus from texts in natural language on the basis of lexico-syntactic templates]. Trudy Kol'skogo nauchnogo centra RAN [Transactions of the Кок Science Centre RAS], 2019, vol. 10, no. 9-9. (In Russ.). 4. Pimeshkov V. K., Dikovickij V. V., Shishaev M. G. Izvlechenie otnoshenij tezaurusa iz tekstov na estestvennom jazyke s ispol'zovaniem statisticheskih i lingvisticheskih metodov [Extraction of relation from natural language texts using statistical and linguistic methods]. Trudy Kol'skogo nauchnogo centra RAN [Transactions of the К ок Science Centre RAS], 2020, vol. 11, no. 8 (11). (In Russ.). Труды Кольского научного центра РАН. Серия: Технические науки. 2022. Т. 13, № 2. С. 31-45. Transactions of the Kola Science Centre of RAS. Series: Engineering Sciences. 2022. Vol. 13, No. 2. P. 31-45. © Пимешков В. К., Шишаев М. Г., 2022 43
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz