Труды КНЦ (Технические науки) 2/2022(13).
Труды Кольского научного центра РАН. Серия: Технические науки. 2022. Т. 13, № 2. С. 31-45. Transactions of the Kola Science Centre of RAS. Series: Engineering Sciences. 2022. Vol. 13, No. 2. P. 31-45. 8. Astrakhantsev N. A., Fedorenko D. G., Turdakov D. Yu. Methods for automatic term recognition in domain-specific text collections: A survey // Programming and Computer Software. 2015. Vol 41, № 6. P. 336-349. 9. An Overview of Named Entity Recognition / P. Sun [et al.] // 2018 International Conference on Asian Language Processing (IALP). Bandung, Indonesia: IEEE, 2018. P. 273-278. 10. Chiticariu L., Li Y., Reiss F. R. Rule-Based Information Extraction is Dead! Long Live Rule-Based Information Extraction Systems! // Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing EMNLP 2013. Seattle, Washington, USA: Association for Computational Linguistics, 2013. P. 827-832. 11. Rule-based Automatic Multi-word Term Extraction and Lemmatization / S. Ranka [et al.] // Proceedings of the 10th International Conference on Language Resources and Evaluation, LREC 2016 (Portoroz, Slovenia, 23-28 May 2016). 2016. P. 507-514. 12. Riaz K. Rule-Based Named Entity Recognition in Urdu // Proceedings of the 2010 Named Entities Workshop. Uppsala, Sweden: Association for Computational Linguistics, 2010. P. 126-135. 13. Maria Teresa P., Pennacchiotti M., Zanzotto F. M. Terminology Extraction: An Analysis of Linguistic and Statistical Approaches // Knowl Mining / journalAbbreviation: Knowl Mining. 2006. Vol. 185. P. 255-279. 14. Salton G., Yang C. S., Yu C. T. A theory of term importance in automatic text analysis // Journal of the American Society for Information Science. 1975. Vol. 26. № 1. P. 33-44. 15. Jones L. P., Gassie Jr. E. W., Radhakrishnan S. INDEX: The statistical basis for an automatic conceptual phrase-indexing system // Journal of the American Society for Information Science. 1990. Vol. 41. INDEX, № 2. P. 87-97. 16. Richman A. E., Schone P. Mining Wiki Resources for Multilingual Named Entity Recognition // Proceedings of ACL-08: HLT ACL-HLT 2008. Columbus, Ohio: Association for Computational Linguistics, 2008. P. 1-9. 17. Klein E., Alex B. Clifford J. Bootstrapping a historical commodities lexicon with SKOS and DBpedia // Proceedings of the 8th Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities (LaTeCH). Gothenburg, Sweden: Association for Computational Linguistics, 2014. P. 13-21. 18. Neural Architectures for Named Entity Recognition / G. Lample [et al.] // arXiv:1603.01360 [cs]. arXiv, 2016. 19. A Survey on Deep Learning for Named Entity Recognition / J. Li [et al.] // arXiv: 1812.09449 [cs]. arXiv, 2020. 20. Deep Active Learning for Named Entity Recognition / Y. Shen [et al.] // arXiv:1707.05928 [cs]. arXiv, 2018. 21. Yadav V., Bethard S. A Survey on Recent Advances in Named Entity Recognition from Deep Learning models // arXiv:1910.11470 [cs]. arXiv, 2019. 22. Conrado M., Pardo T., Rezende S. A Machine Learning Approach to Automatic Term Extraction using a Rich Feature Set // Proceedings of the 2013 NAACL H lT Student Research Workshop. Atlanta, Georgia: Association for Computational Linguistics, 2013. P. 16-23. 23. Foo J. Term extraction using machine learning. 2009. 24. Shi L., Campagne F. Building a protein name dictionary from full text: a machine learning term extraction approach // BMC Bioinformatics. 2005. Vol. 6. Building a protein name dictionary from full text. № 1. P. 88. 25. Yuan Y., Gao J., Zhang Y. Supervised learning for robust term extraction // 2017 International Conference on Asian Language Processing (IALP) 2017 International Conference on Asian Language Processing (IALP). 2017. P. 302-305. 26. Kim J.-H., Kang I.-H., Choi K.-S. Unsupervised Named Entity Classification Models and their Ensembles. 2002. 27. Roth D. Learning to Resolve Natural Language Ambiguities: A Unified Approach. P. 8. 28. Shaalan K., Oudah M. A hybrid Approach to Arabic Named Entity Recognition // Journal of Information Science. 2014. Vol. 40. P. 67-87. 29. A Hybrid Approach for Named Entity Recognition in Indian Languages / S. Kumar [et al.]. © Пимешков В. К., Шишаев М. Г., 2022 42
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz