Труды КНЦ (Технические науки) 2/2022(13).
10. Wei Z., Su J., Wang Yue, Tian Yu. A Novel Cascade Binary Tagging Framework for Relational Triple Extraction. Proceedings o f the 58th Annual Meeting o f the Association fo r Computational Linguistics . Online: Association for Computational Linguistics, 2020, pp. 1476-1488. 11. Wu S., He Y. Enriching Pre-trained Language Model with Entity Information for Relation Classification. arXiv:1905.08284 [cs], 2019. 12. Baldini Soares L., FitzGerald N., Ling J., Kwiatkowski T. Matching the Blanks: Distributional Similarity for Relation Learning. Proceedings o f the 57th Annual Meeting o f the Association fo r Computational Linguistics . Florence, Italy: Association for Computational Linguistics, 2019, pp. 2895-2905. 13. Han X., Wang L. A Novel Document-Level Relation Extraction Method Based on BERT and Entity Information. IEEE Access, 2020, vol, 8, pp. 96912-96919. 14. Sahu S. K., Christopoulou F., Miwa M., Ananiadou S. Inter-sentence Relation Extraction with Document-level Graph Convolutional Neural Network. Proceedings o f the 57th Annual Meeting o f the Association fo r Computational Linguistics . Florence, Italy: Association for Computational Linguistics, 2019, pp. 4309-4316. 15. Fu T.-J., Li P.-H., MaW.-Y. GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction. Proceedings o f the 57th Annual Meeting o f the Association fo r Computational Linguistics . Florence, Italy: Association for Computational Linguistics, 2019, pp. 1409-1418. 16. Li X., Yin F., Sun Z., Li X. Entity-Relation Extraction as Multi-Turn Question Answering. Proceedings o f the 57th Annual Meeting o f the Association fo r Computational Linguistics . Florence, Italy: Association for Computational Linguistics, 2019, pp. 1340-1350. 17. Ding N., Wang X., Fu Yao, Xu G. Prototypical Representation Learning for Relation Extraction, 2021, 16 p. 18. Russian spaCy Models Documentation. Available at: https://spacy.io/models/ru#ru_core_news_sm (accessed 15.06.2021). 19. Gensim: Word2Vec Model. Available at: https://radimrehurek.com/gensim/auto_examples/tutorials/ run_word2vec.html#word2vec-model (accessed 15.02.2022). Информация об авторах П. А. Ломов — кандидат технических наук, старший научный сотрудник; М . Л. Никонорова — инженер-исследователь; М . Г. Шишаев — доктор технических наук, главный научный сотрудник. Information about the authors P. A. Lomov — Candidate o f Science (Tech.), Senior Research Fellow; M . L . N ikonorova — Research Engineer; M . G. Shishaev — Doctor o f Science (Tech.), Chief Research Fellow. Статья поступила в редакцию 15.10.2022; одобрена после рецензирования 01.11.2022; принята к публикации 08.11.2022. The article was submitted 15.10.2022; approved after reviewing 01.11.2022; accepted for publication 08.11.2022. Труды Кольского научного центра РАН. Серия: Технические науки. 2022. Т. 13, № 2. С. 23-30. Transactions of the Kola Science Centre of RAS. Series: Engineering Sciences. 2022. Vol. 13, No. 2. P. 23-30. © Ломов П. А., Никонорова М. Л., Шишаев М. Г., 2022 30
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz