Труды КНЦ вып.12 (ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ вып. 5/2021(12))

Computational Methods: Advances in Intelligent Systems and Computing, 2020, Vol. 1225, pp. 586-597. 14.Pedrosa J., Oliveira D. M., Meira W., Ribeiro A. L. Automated classification of cardiology diagnoses based on textual medical reports. Proceedings of the 8th Symposium on Knowledge Discovery, Mining and Learning, 2020, pp. 185-192. 15.Grishman R. Information Extraction. The Handbook of Computational Linguistics and Natural Language Processing, 2010, - pp. 515-530. 16.Purves R. S., Clough P., Jones C. B., Hall M. H., Murdock V. Geographic Information Retrieval: Progress and Challenges in Spatial Search of Text. Foundations and Trends in Information Retrieval, 2018, Vol. 12, pp. 164-318. 17.Doddington G.R., Mitchell A., Przybocki M., Ramshaw L., Strassel S., Weischedel R. The Automatic Content Extraction (ACE) Program - Tasks, Data, and Evaluation. http://www.lrec-conf.org/proceedings/lrec2004/pdf/5.pdf. 18.Sun P., Yang X., Zhao X., Wang Z. An Overview of Named Entity Recognition. International Conference on Asian Language Processing (IALP), 2018, pp. 273-278. 19.Campelo C.E.C., De Souza Baptista C. A model for geographic knowledge extraction on Web documents. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2009, Vol. 5833, pp. 317-326. 20.Acheson E., Volpi M., Purves R. Machine learning for cross-gazetteer matching of natural features. International Journal of Geographical Information, 2019, Vol.34, pp. 1-27. 21.Zenasni S., Kergosien E., Roche M., Teisseire M. Spatial information extraction from short messages. Expert Systems with Applications, 2018, Vol. 95, pp. 351-367. 22.Capineri C., Haklay M., Huang H., Antoniou V., Kettunen J., Ostermann F., Purves R. European Handbook of Crowdsourced Geographic Information. London: Ubiquity Press, 2016. - 474 p. 23.Stock K. Mining location from social media: A systematic review. Computers, Environment and Urban Systems, 2018, Vol.71, pp. 209-240. 24.Yadav V., Bethard S. A Survey on Recent Advances in Named Entity Recognition from Deep Learning models. Proceedings of the 27th International Conference on Computational Linguistics, 2018, pp. 2145-2158. 25.Song, H.J., Jo, B.C., Park, C.Y., Kim, J.D., Kim, Y.S. Comparison of named entity recognition methodologies in biomedical documents. Biomed. Eng. Online, 2018, Vol. 17, - pp 158. 26.Eftimov, T., Seljak, B.K., Korošec, P. A rule-based named-entity recognition method for knowledge extraction of evidence-based dietary recommendations. PLoS One, 2017, Vol.12, https://doi.org/10.1371/journal.pone.0179488 27.I§iklar, Y.E., £i$ekli, N. A TV content augmentation system exploiting rule based named entity recognition method. Lecture Notes in Electrical Engineering, 2016, Vol. 363, pp. 349-357. 28.Richa Sharma, Sudha Morwal, Basant Agarwal Named entity recognition for Hindi language: A survey. Journal of Discrete Mathematical Sciences and Cryptography, 2019, Vol. 22, pp. 569-580. 29.Ivanitskiy R., Shipilo A., Kovriguina L. Russian Named Entities Recognition and Classification Using Distributed Word and Phrase Representations. Proceedings of the 3rd Annual International Symposium on Information Management and Big Data - SIMBig, 2016, pp. 150-156. 47

RkJQdWJsaXNoZXIy MTUzNzYz