Труды КНЦ вып.12 (ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ вып. 5/2021(12))

References 1. Korsun I.A., Pal'chunov D.E. Teoretiko-model'nye metody izvlecheniya znanij o smysle ponyatij iz tekstov estestvennogo yazyka [Model-theoretic methods for extracting knowledge about the meaning of concepts from natural language texts]. Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriya: Informacionnye tekhnologii. [Novosibirsk State University Bulletin. Series: Information Technology .]. - 2016. - vol. 14. - № 3. - pp. 34-48. (In Russ.). 2. Frantzi K.T. The C-Value/NC-Value Method of Automatic Recognition for Multi­ Word Terms / K.T. Frantzi, S. Ananiadou, J. Tsujii // Proceedings of the Second European Conference on Research and Advanced Technology for Digital Libraries : ECDL ’98. - Berlin, Heidelberg: Springer-Verlag, 1998. - С. 585-604. 3. Kageura K. Methods of Automatic Term Recognition: A Review / K. Kageura, B. Umino // Terminology. - 1996. - Т. 3. - № 2. - С. 259-289. 4. Pazienza M.T. Terminology extraction: an analysis of linguistic and statistical approaches / M.T. Pazienza, M. Pennacchiotti, F.M. Zanzotto // Knowledge mining. - Berlin, Heidelberg: Springer, 2005. - С. 255-279. 5. Astrakhantsev N.A. Methods for automatic term recognition in domain-specific text collections: A survey / N.A. Astrakhantsev, D.G. Fedorenko, D.Yu. Turdakov // Programming and Computer Software. - 2015. - Т. 41. - № 6. - С. 336-349. 6. A Unsupervised Method for Terminology Extraction from Scientific Text / W. Shao [et al.] // EEKE@JCDL. - 2020. 7. Weiss D. An Upgrade to SyntaxNet, New Models and a Parsing Competition / D. Weiss, S. Petrov. - 2017. 8. Mahasoeva O.G., Pal'chunov D.E. Avtomatizirovannye metody postroeniya atomarnoj diagrammy modeli po tekstu estestvennogo yazyka [Automated methods for constructing an atomic diagram of a model from a natural language text] // Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriya: Informacionnye tekhnologii. [Novosibirsk State University Bulletin. Series: Information Technology .]. - 2014. - vol. 12. - № 2. - pp. 64-73. (In Russ.). 9. Jurafsky D. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Т. 2 / D. Jurafsky, J. Martin. - 2008. 10.Palmer M. The Proposition Bank: An Annotated Corpus of Semantic Roles / M. Palmer, P. Kingsbury, D. Gildea // Computational Linguistics. - 2005. - Т. 31. - С. 71-106. 11.About FrameNet | fndrupal. - Available at: https://framenet.icsi.berkeley.edu/ fndrupal/about Accessed: 05.12.2020). 12.Boas H.C. From Theory to Practice: Frame Semantics and the Design of FrameNet / H.C. Boas // Semantisches Wissen im Lexikon / ред. S. Langer, D. Schnorbusch. - Tubingen: Narr., 2005. 13.Predicting Degrees of Technicality in Automatic Terminology Extraction / A. Hatty [и др.] // Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. - Online: Association for Computational Linguistics, 2020. - С. 2883-2889. 14. Belaya T.I., Pasechnik P.A. Vydelenie klyuchevyh ponyatij v tekstovom soderzhimom s ispol'zovaniem statisticheskoj ocenki [Highlighting key concepts in text content using statistical evaluation]. Sovremennye problemy nauki i obrazovaniya (nauchnyj zhurnal) [Modern problems o f science and education (scientific journal)]. - 2014. - № 3. (In Russ.). 20

RkJQdWJsaXNoZXIy MTUzNzYz