Труды КНЦ вып.12 (ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ вып. 5/2021(12))
22.Swami A., Agrawal R., Imielinski T. Mining Associations between Sets of Items in Massive Databases. Proceedings of the ACM-SIGMOD 1993 Int'l Conference on Management of Data, Washington D.C., 1993. 23.Agrawal R., Srikant R. Fast Algorithms for Mining Association Rules. Proceedings of the 20th Int'l Conference on Very Large Databases, Santiago, Chile, 1994. 24.Savasere A., and Navathe S., Omiecinski E. An Efficient Algorithm for Mining Association Rules in Large Database. Proceedings of the 21st Int'l Conf. Very Large Data Bases, Morgan Kaufmann, San Francisco, 1995, pp. 432-444. 25.Savasere A., and Navathe S., Omiecinski E. An Efficient Algorithm for Mining Association Rules in Large Databases. Proceedings of the 21st Int'l Conf. Very Large Data Bases, Morgan Kaufmann, San Francisco, 1995, pp. 432-444. 26.Brin S. et al. Dynamic Itemset Counting and Implication Rules for Market Basket Data. Proceedings of the ACM SIGMOD Int'l Conf. Management of Data, ACM Press, New York, 1997, pp. 255-264. 27.Chen M., Park J. and Yu P. Efficient data mining for path traversal patterns. IEEE, Transactions on knowledge and data engineering, 1998, pp. 209-221. 28.Savasere A., Omiecinski E., and Navathe S. An efficient algorithm for mining association rules in large databases. Proceedings of the 1995 Int. Conf. Very Large Data Bases (VLDB’95), Google Scholar, Zurich, Switzerland, 1995, pp. 432-443. 29.Chernoff H. The Use of Faces to Represent Points in K-Dimensional Space Graphically. Journal of American Statistical Association, 1973, No. 68, pp. 361-368. 30.Brin S., Motwani R., Ullman J.D. and Tsur, S. Dynamic Itemset Counting and Implication Rules for Market Basket Data. Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD 1997), Tucson, 13-15 May, 1997, pp. 265-276. 31.Ignatov D.I. Analysis formalnykhponyatiy: ot theory kpractice [Analysis of formal concepts: from theory to practice]. Doklady vserossiyskoy nauchnoy konferentsii AIST'12 "Analiz izobrazheniy, setey i tekstov. Modeli, algoritmy i instrumenty analiza dannykh; rezul'taty i vozmozhnosti dlya analiza izobrazheniy, setey i tekstov". [Reports of the All-Russian scientific conference AIST'12."Analysis of images, networks and texts. Models, algorithms and data analysis tools; results and capabilities for the analysis of images, networks and texts"]. Ekaterinburg, Open Systems, 2012, pp. 3-15. (In Russ.). 32.Wille R. Restructuring Lattice Theory: an Approach Based on Hierarchies of Concepts. Ordered Sets, Ed. by I. Rival. Dordrecht, Boston: Reidel, 1982, pp. 445 470. 33.Ganter B., Wille R. Formal Concept Analysis: Mathematical Foundations. Berlin; Heidelberg: Springer Verlag, 1999. 34.Ignatov D.I., Kononykhina O.N. Reshetkiformalnykh ponyatiy dla analysis dannykh sotsiological oprosov [Lattices of formal concepts for the analysis of sociological survey data]. Integrated models and soft calculations in artificial intelligence. Collection of scientific works of the V-th International Scientific and Technical Conference. Moscow, Fizmatlit, 2009, Vol. 1, 546 p. (In Russ.). 35.Hereth J., Stumme G. Advances in Formal Concept Analysis fo r Knowledge Discovery in Databases. Seite 1-2. Lyon, France, 2002. 36.Doerfel S., Jaschke R., and Stumme G. Formal Concept Analysis, of Lecture Notes in Artificial Intelligence. Berlin/Heidelberg, Springer, 2012, Vol. 7278, pp. 77-95. 102
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz