Труды КНЦ вып.3 (ХИМИЯ И МАТЕРИАЛОВЕДЕНИЕ) вып. 1/2019(10))
9. Guven D. E., Akinci G. Comparison of Acid Digestion Techniques to Determine Heavy Metals in Sediment and Soil Samples // Gazi University Journal of Science. 2011. 24 (1). P. 29-34. 10. Sacrist6n Moragas, D. Evaluaciyn de la toxicidad y de la bioacumulaciyn del Cu en un cultivo acumulador ( Lactuca sativa L.) y otro no-acumulador ( Solanum lycopersicum L.) en suelos agmcolas mediterr6neos representativos, como base para la propuesta de estrategias de gestiyn. (Ph.D. thesis). Valencia University, Spain. 2015. 11. Sequential extraction of heavy metals in soils from a copper mine: distribution in geochemical fractions / D. Arenas-Lago et al. // Geoderma. 2014. 230-231. P. 108-118. 12. Risk of metal mobility in soils from a Pb / Zn depleted mine (Lugo, Spain) / D. Arenas-Lago et al. //Environ. Earth Sci. 2014. 72 (7). P. 2541-2556. 13. Cobalt, chromium and nickel contents in soils and plants from a serpentinite quarry / M. Lago-Vila et al. // Solid Earth. 2015. 6 (1). P. 323-335. 14. Heavy metal content and toxicity of mine- and quarry soils / M. Lago-Vila et al. // J. Soils Sed. 2016. http://dx.doi.org/10.1007/s11368-016-1354-0 (published online). 15. Sequential extraction of soils for multielement analysis by ICPAES / X. Li et al. // Chem. Geol. 1995. 124 (1-2). P. 109-123. 16. Moor C., Lymberopoulou T., Dietrich V. J. Determination of heavy metals in soils, sediments and geological materials by ICP-AES and ICP-MS // Microchim. Acta. 2001.136. P. 123-128. 17. Limitations for revegetation in a lead/zinc minesoils (NW Spain) / A. Rodmguez- Seijo et al. // J. Soils Sediments. 2014. 14. P. 785-793. 18. Rodmguez-Seijo A., Andrade M. L. Characterization of soil physico-chemical parameters and limitations for revegetation in serpentine quarry soils (NW Spain) // J. Soils Sed. 2016. http://dx.doi.org/10.1007/s11368-015-1284-2 (published on line). 19. Rapid screening of heavy metals and trace elements in environmental samples using portable X-ray fluorescence spectrometry, a comparative study / J. Q. McComb et al. // Water Air Soil Pollut. 2014. 225. P. 2169-2179. 20. Analytical techniques for estimation of heavy metals in soil ecosystem: a tabulated review / R. K. Soodan et al. // Talanta. 2014. 125. P. 405-410. 21. McBride M. B., Spiers G. Trace element content of selected fertilizers and dairy manures as determined by ICP-MS // Commun. Soil Sci. Plant Anal. 2001. 32 (1-2). P. 139-156. 22. Weng L., Vega F. A., Van Riemsdijk W. H. Strategies in the application of the Donnan membrane technique // Environ. Chem. 2011. 8 (5). P. 466-474. 23. Optimisation and validation of a laser ablation inductively coupled plasma mass spectrometry methods for the routine analysis of soils and sediments / L. Arroya et al. // Spectrochimica Acta B. 2009. 64. P. 16-25. 24. Analysis of soil and sediment samples by laser ablation inductively coupled plasma mass spectrometry / S. A. Baker et al. // Journal of Analytical Atomic Spectrometry. 1999. 14. P. 19-26. 25. Study of solution calibration of NIST soil and glass samples by laser ablation inductively coupled plasma mass spectrometry / M. Bi et al. // Applied Spectroscopy. 2000. 54. P. 639-644. 26. Новиков А. И., Очкина А. К., Дрогобужская С. В. Выбор условий приготовления таблетированных форм для ЛА ИСП МС // Матер. межрег. науч.- техн. конф. молодых ученых, специалистов и студентов ВУЗов «Научно практические проблемы в области химии и химических технологий» (Апатиты, 15-17 апреля 2015 г.). Апатиты: КНЦ РАН, 2015. С. 91-95. 425
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz