Труды КНЦ вып.9 (ХИМИЯ И МАТЕРИАЛОВЕДЕНИЕ вып. 6/2018(9))

Введение Значительным резервом увеличения добычи титана и сопутствующих полезных металлов могут стать их нетрадиционные источники. На повестке дня стоит задача освоения титановых месторождений с нетрадиционными типами руд, которые ранее не использовались в промышленности, например, таких, где главным рудным минералом является перовскит [1]. Перовскит представляет собой титанат кальция CaTiO3, в котором наряду с титаном содержатся и другие ценные компоненты — тантал, ниобий, редкоземельные элементы (РЗЭ) [2]. Известно большое количество реагентов для вскрытия минерального сырья. Обычно в роли таких реагентов выступают «агрессивные среды» — кислоты, щелочи, окисляющие агенты, аммонийные и фторидно-аммонийные реагенты. Выбор реагента зависит от типа сырья, от извлекаемых элементов, доступности реагента в данном регионе и его стоимости. Для переработки перовскитового концентрата используются кислотные методы вскрытия, которые основаны на различии растворимости титана и сопутствующих компонентов в кислотах. В ИХТРЭМС КНЦ РАН разработаны различные варианты комплексной технологии переработки перовскита: азотнокислотно-сернокислотная, солянокислотная, солянокислотно-гидрофторидная, сернокислотная, азотнокислотная и др., дающие возможность получать широкий спектр товарных продуктов [3]. Они предполагают получение, наряду с диоксидом титана и редкометалльной продукцией, дубителей для кож, компонентов сварочных материалов и многих других продуктов, соотношения между которыми может меняться в зависимости от конъюнктуры рынка [4]. Азотнокислотная схема разложения перовскита решает одну из важнейших задач процесса — отделение титана, ниобия и тантала от РЗЭ, кальция и тория. Продукт, получаемый при азотнокислотном вскрытии перовскитового концентрата, представляет собой суспензию, состоящую из азотнокислотного раствора и осадка — кека [5]. Извлечение компонентов в раствор и состав осадка зависят, главным образом, от концентрации и расхода азотной кислоты, используемой для разложения, а также от технологических параметров процесса (температура, давление, продолжительность). В осадке сосредоточены Ti, Nb и Ta в виде гидроксидов, в азотнокислотном растворе — Fe, Ca, РЗЭ, U и Th. Для дальнейшей эффективной переработки азотнокислотного раствора с выделением соединений РЗЭ необходимо провести дезактивацию с одновременным удалением железа. Для осаждения железо-ториевого кека используют известковое молоко с концентрацией 15 % СаО. Осаждение проводят при непрерывном перемешивании раствора и контроле pH до достижения pH = 4,7-5,0. При этом температура смеси достигает 58-60 °С [6]. Цель дальнейшей переработки полученного дезактивированного раствора — выделение концентрата РЗЭ. В литературе описаны несколько вариантов получения различных соединений РЗЭ — осаждение карбонатов [7], осаждение оксалатов [8, 9], получение фторидов [10], экстракционное выделение РЗЭ [11]. В работе [11] показано, что РЗЭ и HNO 3 практически полностью переходят в органическую фазу за счет присутствия высаливателей— нитратов натрия и кальция. Изотермы экстракции подняты достаточно высоко, однако насыщение органической фазы РЗЭ значительно ниже расчетной емкости вследствие высаливания их из органической фазы кислотой [11]. Ввиду высокого содержания кальция в исследуемом азотнокислотном растворе был выбран последний вариант — получение соединений РЗЭ с помощью экстракции трибутилфосфатом (ТБФ). 35

RkJQdWJsaXNoZXIy MTUzNzYz