Труды КНЦ вып.9 (ЭНЕРГЕТИКА вып. 3/2018(9))

Рис. 7. Сравнение деформации волн в однопроводной и трехпроводной постановке задачи при поражении только среднего провода и всех трех проводов На рис. 7 приведены результаты расчетов в трех случаях. Средняя кривая — это напряжение на втором проводе линии с горизонтальным расположением проводов без тросов при перекрытии только на этот провод. Нижняя кривая — чисто модельный случай одновременного перекрытия на все три провода. Фактически это удвоенная волна в первом канале, показанная на рис. 2. Остальные каналы в этом варианте не работают. Третья кривая — это расчет в однопроводной постановке задачи при параметрах провода, соответствующих средней фазе на рис. 1, а. Видно, что полностью отсутствуют участок с наиболее крутым фронтом и почти горизонтальная ступень, вызванная разными скоростями распространения волн в первом и междупроводных каналах. В целом влияние земли меньше, чем при трехфазном перекрытии. Это объясняется тем, что эквивалентное волновое сопротивление одной фазы линии 330 кВ при идеально проводящей земле, определяемое первым слагаемым в выражении (3), составляет около 350 Ом. Для трех фаз, включенных параллельно, волновое сопротивление равно 160 Ом. Во второе слагаемое, определяющее добавку, вносимую проникновением поля в землю, эквивалентный радиус фаз (системы фаз) не входит. Эта добавка остается постоянной и её доля в случае однопроводной линии уменьшается. Можно этот факт трактовать еще и по другому: при одинаковых напряжениях на проводах суммарные токи в трехфазной системе из-за снижения эквивалентного волнового сопротивления будут больше, чем в однопроводной постановке задачи. Эти токи в обоих расчетных вариантах полностью возвращаются в земле и, соответственно, расчетные потери при подаче волн на все три фазы будут больше. Анализируя рис. 7 можно констатировать, что для получения не только количественной, но и даже качественной оценки формы и параметров волн при напряжении ниже начала короны нужна многопроводная постановка задачи. Заключение. Предыдущий анализ показывает, что в многопроводных линиях после пробегов грозовыми волнами расстояний до нескольких десятков километров закономерно возникают напряжения с фронтами в доли микросекунды и амплитудами, близкими к половине напряжения в месте поражения линии. Для рассматриваемой линии 330 кВ это напряжение было ранее оценено в 700 кВ. Отсюда расчетную амплитуду волны, набегающей на трансформатор в конце ВЛ, можно оценить в 350 кВ. Пренебрегая переходными 21

RkJQdWJsaXNoZXIy MTUzNzYz