Труды КНЦ вып.9 (ХИМИЯ И МАТЕРИАЛОВЕДЕНИЕ вып. 1/2018(9) Часть 2)
(R = Li / Nb > 1) может служить причиной возникновения кислородных вакансий в кристаллах [7]. В пределах области гомогенности LiNbO3при увеличении содержания лития в расплаве и приближении его к конгруэнтному составу, коэффициент распределения лития уменьшается соответственно от 1,02 до 0,98 [8]. В связи с этим в процессе выращивания, при соотношении основных компонентов R = Li / Nb в расплаве выше состава конгруэнтного плавления, избыточный литий играет роль примеси и может образовывать полосы роста в кристаллах ниобата лития в случае флуктуаций температуры на фронте кристаллизации [9]. При выращивании кристаллов из легированных расплавов ниобата лития, помимо колебаний соотношения основных компонентов, происходит закономерное изменение концентрации вводимой примеси в зависимости от величины эффективного коэффициента распределения в системе «расплав — кристалл». Кроме того, случайные флуктуации основного и примесного состава в продольном и поперечном сечении кристалла, возникающие вследствие нестабильности условий выращивания кристаллов, например, при колебаниях скорости роста, вызванных несовершенством аппаратуры или нестабильным водоохлаждением, при асимметрии теплового поля или некорректно подобранных тепловых условиях и технологических режимах кристаллизации, являются дополнительным фактором неоднородности. Это при выращивании сильно легированных кристаллов LiNbO 3 может привести к появлению таких дефектов, как ячеистые структуры, ростовые каналы первого и второго рода, ротационные и конвективные неоднородности [4, 10, 11]. Таким образом, получение кристаллов с однородным распределением основных, примесных компонентов и легирующей добавки и с высокой воспроизводимостью свойств является сложной технологической задачей. Решение этой задачи во многом зависит от качества и степени гомогенизации используемой номинально чистой и легированной шихты, тепловых условий и технологических режимов выращивания [12-14]. Исследование процессов выращивания сильно легированных монокристаллов LiNbO3 в широком диапазоне концентраций легирующей добавки Реализация технологии контролируемого введения примеси заданной концентрации требует детального изучения системы «расплав — примесь — кристалл» с целью определения характера распределения примеси в системе в зависимости от концентрации примеси в расплаве в широкой области концентраций. Эксперименты проводились с использованием легирующих компонентов: РЗЭ (Er, Tb, Pr, Dy, Tm, Gd, Sm, Lu) и фоторефрактивных примесей (Zn, Mg). Легирующая добавка вводилась в шихту ниобата лития в виде оксидов соответствующих металлов. Для исследования системы «расплав — примесь — кристалл» был разработан метод экспресс-оценки и применен общий подход: легирование производили от меньшей концентрации к большей, при расчете каждой следующей догрузки вследствие отсутствия данных об исследуемой системе «расплав — примесь — кристалл» коэффициент распределения условно считали равным 1. Расчет фактической концентрации примеси в расплаве и оценочного коэффициента распределения примеси производили после получения сведений о реальных концентрациях примесей в конусной и торцевой частях кристаллов всей серии. Методика расчета подробно описана в [12, 14] Вследствие большой разницы в молекулярном весе оксида цинка (MZnO= 40,32) и ниобата лития (MLiNbO3 = 147,85) предъявляются повышенные требования к точности взвешивания основной загрузки шихты ниобата лития, особенно добавляемого в шихту оксида ZnО. В нашем случае взвешивание производили на электронных весах с точностью ~ 0,01 г. В дальнейшем концентрацию легирующей примеси в кристаллах определяли методом атомно-абсорбционного анализа с точностью ~ 1 % . Концентрация РЗЭ в ниобате лития определялась методом рентгенофлюоресцентного анализа. Были выращены серии монокристаллов LiNbO 3 : РЗЭ (Er, Tb, Pr, Dy, Tm, Gd, Sm, Lu) в широком диапазоне концентраций легирующей добавки в расплаве (0,1, 0,5, 1,0, 1,5,2,0, 2,5, 3,0 мас. %) [12]. Для оценки системы «расплав — кристалл» LiNbO 3 : Zn в одинаковых условиях было получено 2 серии монокристаллов. Первая серия была получена при концентрации ZnО в расплаве ~ от 4,0^9,0 мол. % с шагом легирования ~ 0,5 мол. %, которая позволила определить оценочный эффективный коэффициент распределения примеси для данной технологии. Вторая серия монокристаллов была получена в концентрационном диапазоне от 5,3 до 7,0 мол. % ZnО в расплаве с шагом легирования 0,2 мол. % с целью уточнения значения основной «пороговой концентрации». В этом случае для расчета каждой следующей загрузки коэффициент распределения выбирали на основании концентрационных зависимостей, полученных при обработке результатов первой серии кристаллов. Монокристаллы выращивались из платиновых тиглей 0 65 и 75 мм на модернизированной установке «Кристалл 2» индукционного типа, оснащенной тиристорным генератором с рабочей частотой 10 кГц и системой автоматического контроля диаметра кристалла. Выбор тепловых условий роста монокристаллов и соответствующих им технологических режимов выращивания осуществлялся экспериментально. Конструкции тепловых узлов для каждой серии разрабатывались с учетом теплофизических характеристик используемой алундовой и циркониевой керамики соответствующего типоразмера. Оптимальное положение тигля в индукторе, расстояние между тиглем и активным платиновым экраном цилиндрической формы определялось опытным путем с последующим контрольным измерением осевого температурного градиента. Осевые температурные градиенты тепловых узлов для выращивания серий монокристаллов LiNbO 3 : РЗЭ (Er, Tb, Pr, Dy, Tm, Gd, Sm, Lu) в широком диапазоне концентраций легирующей добавки в расплаве (0,1, 0,5, 1,0, 1,5,2,0, 2,5, 3,0 мас. %) [12] и двух серий кристаллов LiNbO 3 : Zn от 4,0 до 9,0 мол. % Zn в расплаве представлены на рисунках 1 и 2. 543
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz