Труды КНЦ вып.38 (ГЕЛИОФИЗИКА вып. 4/2016(38))

пыль, пепел и другие крупные частицы. При общем принципиальном сходстве между этими явлениями отличия их ионосферных эффектов выражаются в разной интенсивности, продолжительности и горизонтальных масштабах. Благодарности. Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 16-35-00397 мол_а. Литература 1. Disturbance o f the Electric Field in the Ionosphere by Sea Storms and Typhoons / N. V. Isaev [et al.] // Cosmic Research. 2002. Ѵ о і . 40, № . 6. P. 547-553. DOI: 10.1023/A: 1021549612290. 2. Observation by space-borne detectors o f electric fields and hydromagnetic waves in the ionosphere over on earthquake center / V. M. Chmyrev [et al.] // Physics of the Earth and Planetary Interiors. 1989. Ѵ о і . 57. P. 110-114. DOI: 10.1016/0031- 9201(89)90220-3. 3. Ionospheric quasi-static electric field anomalies during seismic activity in August- September 1981 / M. Gousheva [et al.] // Natural Hazards and Earth System Sciences. 2009. Ѵ о і . 9. P. 3-15. DOI: 10.5194/nhess-9-3-2009. 4. The characteristics o f quasistatic electric field perturbations observed by DEMETER satellite before large earthquakes / X. Zhang [et al.] // J. Asian Earth Sciences. 2014. Ѵ о і . 79. P. 42-52. DOI: 10.1016/j.jseaes.2013.08.026. 5. Physical Mechanism and Mathematical Modeling o f Earthquake Ionospheric Precursors Registered in Total Electron Content / A. A. Namgaladze [et al.] // Geomagnetism and Aeronomy. 2009. Ѵ о і . 49. № . 2. P. 252-262. DOI: 10.1134/S0016793209020169. 6. Karpov M. I., Namgaladze A. A., Zolotov O. V. Modeling o f Total Electron Content Disturbances Caused by Electric Currents between the Earth and the Ionosphere // Russian J. Physical Chemistry B. 2013. Ѵ о і . 7. № . 5. P. 594-598. DOI: 10.1134/S1990793113050187. 7. Physical bases o f the generation o f short-term earthquake precursors: A complex model o f ionization-induced geophysical processes in the lithosphere-atmosphere- ionosphere-magnetosphere system / S. A. Pulinets [et al.] // Geomagnetism and Aeronomy. 2015. Ѵ о і . 55. № . 4. P. 521-538. DOI: 10.1134/S0016793215040131. 8. Sorokin V. M., Hayakawa M. Generation o f seismic-related DC electric fields and lithosphere-atmosphere-ionosphere coupling // Modern Applied Sci. 2013. Ѵ о і . 7. № . 6. P. 1-25. DOI: 10.5539/mas.v7n6p1. 9. Namgaladze A. A., Karpov M. I. Conductivity and external electric currents in the global electric circuit // Russian J. Physical Chemistry В. 2015. Ѵ о і . 9. № . 4. P. 754-757. DOI: 10.1134/S1990793115050231. 10.Virk H. S., Singh B. Radon recording o f Uttarkashi earthquake // Geophysical Res. Let. 1994. Ѵ о і . 21. P. 737-741. DOI: 10.1029/94GL00310. 11. Evidence of precursor phenomena in the Kobe earthquake obtained from atmospheric radon concentration / Y. Yasuoka [et al.] // Applied Geochemistry. 2006. Ѵ о і . 21. P. 1064-1072. DOI: 10.1016/j.apgeochem.2006.02.019. 12. Harrison R. G., Aplin K. L., Rycroft M. J. Atmospheric electricity coupling between earthquake regions and the ionosphere // J. Atmospheric and Solar-Terrestrial Physics. 2010. Ѵ о і . 72, № . 5-6. P. 376-381. DOI: 10.1016/j.jastp.2009.12.004. 13. Surkov V. Pre-seismic variations o f atmospheric radon activity as a possible reason for abnormal atmospheric effects // Annals o f Geophysics. 2015. Vol. 58, No 5. A0554. DOI: 10.4401/ag-6808. 111

RkJQdWJsaXNoZXIy MTUzNzYz