Труды КНЦ вып.17 (ЭНЕРГЕТИКА вып. 4/2013(17))

Видно резкое различие с рис.7. При высоких удельных сопротивлениях грунта импульсная корона является добавочным фактором к искажению волн вследствие поверхностного эффекта в земле, а не наоборот. Во всяком случае, пренебрегать влиянием земли нельзя, хотя в большинстве работ, посвященных описанию и обработке экспериментальных исследований (например в [12]), этот фактор вообще не упоминается. Особенно сильно влияние проникновения поля в землю сказывается на начале коронирования. В [3] показано, что заземление параллельных проводов в месте удара молнии снижает напряжение начала короны на пораженном молнией проводе. Эго происходит из-за появления отрицательных зарядов на параллельных проводах, которые необходимы для поддержания на них нулевого потенциала во внешнем поле, созданном зарядом пораженного провода При учете влияния земли снижение напряжения, при котором начинается корона, проявляется значительно сильнее. Как видно из рис.6 и 8, в начальных частях импульсов на параллельных проводах появляются волны противоположного знака (в данном случае положительного). Это связано с разделением зарядов в изолированных проводах из-за разных скоростей распространения импульсов в волновых каналах Положительные свободные заряды распространяются по линии почти со скоростью света в вакууме, создавая свое поле в месте расположения пораженного провода Поэтому на этом проводе для создания того же уровня напряжения, что и в однопроводном случае, в многопроводной линии с потерями необходим больший заряд. Критический заряд в многопроводной линии будет возникать при меньших напряжениях, чем в однопроводной линии. Таким образом, при учете обоих искажающий факторов на формирование фронтов импульсов напряжения на пораженном молнией проводе влияют несколько моментов: нарастание фронта исходной волны; деформация фронта из-за разных скоростей распространения в волновых каналах; нарастание импульсов напряжения противоположного знака на параллельных проводах, а затем переход этих импульсов через ноль. Последний момент влияет на плавность скорости нарастания напряжения вблизи коронного порога и скорость подъема напряжения после начала короны (рис.86). Во всяком случае расчеты с использованием вольткулоновых характеристик одиночных проводов для объяснения данных классических экспериментов на многопроводных опытных участках линий и давали расхождения именно в форме кривых в самом начале коронирования и недостаточной вогнутости основной части фронта. В рамках данной работы такое сопоставление не проводилось. Считаем, что целесообразно вернуться к опытам 1960-х гг. для анализа их результатов на современном уровне развития математическихмоделей. Теперь перейдем к учету влияния опор и возможному перекрытию линейной изоляции. Метод бегущих волн в рамках единой схемы замещения подхода BJ1 к подстанции позволяет учесть практически любые неоднородности линии по длине, в том числе влияние опор с соответствующим изменением взаимного расположения проводов. Разнообразие типов опор практически не позволяет создать универсальную схему их замещения с учетом реактивных параметров отдельных элементов опоры стоек, траверс, фундаментов, оттяжек и т.д. Так или иначе, приходится создавать некоторый банк данных для опор разных типов. Это выходит за рамки настоящей работы. Для методических целей была выбрана простейшая с алгоритмической точки зрения опора с треугольным расположением проводов и одним тросом (рис.9а). В соответствии с рекомендациями, полученными в [13], в первом приближении учитываются только индуктивности вертикальных частей опоры. Индуктивностями траверс пренебрегаем. Активные сопротивления между проводами и телом опоры имитируют сопротивление изоляции проводов и троса и могут полагаться или очень большими (до пробоя) или малыми (после пробоя изоляции проводов и для заземленного троса). Будем считать, что вольт-секундная характеристика изоляции известна и задана массивом точек 26

RkJQdWJsaXNoZXIy MTUzNzYz