Труды КНЦ вып.17 (ЭНЕРГЕТИКА вып. 4/2013(17))

Начальные приближения для всех R и L задавались по [8]. Подобраны параметры трехзвенной схемы для диапазона частот от 10 кГц до 1 МГц, использованного в [8], и в диапазоне частот, сдвинутом в сторону увеличения на порядок. Далее при фиксированном верхнем пределе 10 МГц выполнено последовательное увеличение числа звеньев от 3 до 6. Максимальный диапазон опорных частот для 6 звеньев составил 5 декад, что с большим запасом перекрывает диапазон спектров частот, значимых для формирования параметров грозовых импульсов на BJ1 и подстанциях (фронтов, амплитуд, спадов апериодических волн, возможных колебательных составляющих, возникающих из-за многократных отражений волн в местах неоднородностей линий и ошиновок). Кроме использования процедуры Minerr() системы Mathcad для целей включения в общий алгоритм расчета деформации волн в многопроводной линии применялась стандартная подпрограмма DNEQNF из математической библиотеки IMSL. Вообще говоря, задача нахождения точного решения нелинейной системы (4) не является тривиальной. Необходимо найти значения активных сопротивлений, различающихся более чем на 5 порядков, что при относительно малых изменениях индуктивностей приводит к такому же различию постоянных времени звеньев. Как показала практика расчетов, для достаточно точного нахождения решения системы (4) и совпадения с результатами счета по обеим программам необходимо использование программ двойной точности (первая буква D в названии подпрограммы) даже на компьютерах с 64-разрядным процессором. Для 6 звеньев подпрограмма DNEQNF работает устойчиво для удельных сопротивлений грунта от 1 до 105 Ом м при совпадении со счетом по Minerr() в пределах 5-7 значащих цифр для параметров всех звеньев. При шаге по частоте на декаду случаи зависания компьютера (Міпегг) и выхода на тотальные ошибки (DNEQNF) не отмечены. Такие случаи происходили для меньшего количества звеньев при варьировании диапазона моделируемых частот, а также для шестизвенной Л7,-схсмы при сужении диапазона частот. Поэтому дальнейшее изложение ориентировано на учет влияния проникновения поля в грунт с помощью RL- схем, состоящих из шести звеньев при логарифмическом шаге по частоте 10, начальной (первой) частоте 100 Гц, а также при удельном сопротивлении грунта р=10000 Ом'м, типичном для Кольско-Карельского региона и наиболее показательном для сопоставления влияния различных факторов на искажение фронтов грозовых волн. На рисунке 2 приведено сопоставление исходных частотных зависимостей вещественных и мнимых частей сопротивлений, рассчитанных по (1), и вещественных и мнимых частей сопротивлений шесгизвенных RL- схем. На всех четырех графиках задан логарифмический масштаб по частоте. По сопротивлениям на рис.2а и б задан также логарифмический масштаб. Видно, что в пределах всего заданного диапазона частот в этом масштабе кривые практически наложены друг на друга. При уменьшении частоты ниже 100 Гц происходит резкое расхождение активных сопротивлений. Расхождения на частотах выше последней из опорных частот наиболее наглядно видны при использовании линейного масштаба по сопротивлениям (рис.2в и г). Исходные кривые идут резко вверх, а вещественные части сопротивлений цепочек стремятся к горизонтали на уровне активного сопротивления последнего звена, т.е. к 25137 Ом. Мнимые части сопротивлений цепочек на очень высоких частотах стремятся к нулю. 17

RkJQdWJsaXNoZXIy MTUzNzYz