Труды КНЦ вып.17 (ЭНЕРГЕТИКА вып. 4/2013(17))
Настоящая статья является продолжением работ авторов по созданию быстродействующего алгоритма расчета деформации фронтов грозовых волн в линиях электропередачи на подходах к подстанциям [1-8]. Рассматриваются длины пробега волн не более единиц километров. В каждом пролете линия принимается однородной и считается, что каждый из проводов и грозозащитных тросов подвешен на некоторой средней высоте. В пролетах учитывается изменение поперечных параметров проводов из-за влияния короны и продольных параметров из-за влияния проникновения электромагнитного поля в землю. Расчет ведется методом бегущих волн, в котором влияние обоих искажающих факторов выносится в К- и Z-узлы [9]. Считается, что между этими узлами распространение волн по всем проводам и тросам происходит со скоростью света в вакууме (с=300 м/мкс) без искажения. Вопрос об оптимальной расстановке отдельно Y- и Z-узлов рассмотрен в [9]. Оптимизация расстановки узлов при совместном учете короны и потерь в земле рассмотрена ниже. Кроме того, в данной статье рассматривается влияние опор линии, в местах установки которых заземляются тросы, и вводится возможность перекрытия линейной изоляции. После перекрытия гирлянд на формирование формы волны оказывают влияние индуктивности участков опор и сопротивления их заземления. При этом возникает резкий срез напряжения при распространении волны по проводам после прорыва молнии. На проводе появляется волна с очень крутым фронтом после поражения молнией опор и тросов. Для районов с высоким удельным сопротивлением грунта (р) характерны значения сопротивлений заземления опор і?Ор^100 Ом. Если индуктивность опоры Lop«10 мкГн, то после перекрытия гирлянды на проводе формируется волна с постоянной времени Тб = Lop/Rop < 0 .1 іёп . Можно отметить, что резкие скачки напряжения из-за перекрытия линейной изоляции на первых опорах от подстанции более вероятны, чем просто удары молнии с очень короткими фронтами в те же пролеты линии. Длительность импульса напряжения на проводах при больших сопротивлениях опор будет определяться относительно большим остаточным напряжением на них и может составлять десятки и сотни микросекунд. В связи с этим в данной работе рассмотрены вопросы моделирования частотно-зависимых потерь в земле схемами с постоянными параметрами в более широком диапазоне частот, чем описано в [8]. В этой работе подробно рассмотрены модели, состоящие из трех последовательно включенных Л7,-звеньев с параллельно включенными К и L. Такие схемы дают хорошее приближение к исходным частотным зависимостям добавок к продольным сопротивлениям линии, возникающим из-за проникновения электромагнитного поля в землю, в диапазоне изменения частот не более чем на две декады, например, от 104до 10б Гц или от 103до 105 Гц. В первом диапазоне достаточно хорошо моделируется процесс искажения микросекундных фронтов грозовых волн, во втором - удлинение спадов волн. Поскольку для целей грозозащиты подстанций критически важно, возможно, более точное моделирование фронтов, то обычно рассматривался первый вариант. При пробегах волн в сотни метров и единицы километров можно пренебречь влиянием затухания волн в междупроводных каналах и учитывать потери только в канале «все провода - земля». Как подробно исследовано в [9], это означает, что все добавки из-за проникновения поля в землю к собственным и взаимным сопротивлениям многопроводной линии равны друг другу и могут быть определены по выражению [5]: 14
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz