Север и рынок. 2025, № 1.

СЕВЕР И РЫНОК: формирование экономического порядка. 2025. № 1. С. 7-25. Sever i rynok: formirovanie ekonomicheskogo poryadka [The North and the Market: Forming the Economic Order], 2025, no. 1, pp. 7-25. СТРАТЕГИЯ И МЕХАНИЗМЫ РЕАЛИЗАЦИИ ГОСУДАРСТВЕННОЙ ПОЛИТИКИ В РОССИЙСКОЙ АРКТИКЕ 26. Surguladze V. Sh. Ideologicheskoe izmerenie strategii natsional'noi bezopasnosti Rossiiskoi Federatsii: Sravnitel'nyi analiz dokumentov 2015 i 2021 godov [The ideological dimension of the national security strategy of the Russian Federation: A comparative analysis of the documents of 2015 and 2021]. Gumanitarnye nauki. Vestnik Finansovogo universiteta [Humanities. Bulletin of the Financial University], 2022, no. 12 (1), pp. 60-69. https://doi:10.26794/2226-7867-2022-12-1-60-69. (In Russ.). 27. Roslyakova N. A., Mitrofanova I. V., Kanevsky E. A., Boyarsky K. K. Osobennosti sotsial'no-ekonomicheskogo razvitiya regionov Severa i Yuga Rossii: metodika poluavtomaticheskogo analiza dokumentov strategicheskogo planirovaniya [Features of socio-economic development in the Russian North and South: A methodology for semi-automatic analysis of strategic planning documents]. Sever i rynok: formirovanie ekonomicheskogo poryadka [The North and the Market: Forming the Economic Order], 2023, no. 2, рр. 61-77. https://doi:10.37614/2220-802X.3.2023.81.004. (In Russ.). 28. Ordonez Barona C., Denis A. S., Jung J., Bassett C. G., Delagrange S., Duinker P., Conway T. A content analysis of urban forest management plans in Canada: Changes in social-ecological objectives over time. Landscape and Urban Planning, 2024, Vol. 251, 105154. https://doi.org/10.1016/jJandurbplan.2024.105154. 29. Surnina N. M., Shishkina Е. А., Dyachkov A. G. Sbalansirovannost' strategicheskogo planirovaniya prostranstvennykh infrastrukturnykh sistem [Balances in strategic planning of the spatial infrastructure systems]. Journal o f New Economy, 2019, Vol. 20, no. 5, pp. 75-91. https://doi.org/10.29141/2658-5081-2019-20-5-5. 30. Ferrod R., Bondarenko D. A., Audrito D., Siragusa G. Pairing EU directives and their national implementing measures: A dataset for semantic search. Computer Law & Security Review, 2023, Vol. 51, 105862. https://doi.org/10.1016/j.clsr.2023.105862. 31. Harris P., Kent J., Sainsbury P., Thow A. M. Framing health for land-use planning legislation: A qualitative descriptive content analysis. Social Science & Medicine, 2016, Vol. 148, pp. 42-51. https://doi.org/10.1016/j.socscimed.2015.11.029. 32. Guo M., Li Q., Wu C., Le Vine S., Ren G. Content analysis of Chinese cities' Five-Year Plan transport policy documents. Case Studies on Transport Policy, 2023, Vol. 13, 101055. https://doi.org/10.1016/jxstp.2023.101055. 33. Wang L., Cai K., Song Q., Zeng X., Yuan W., Li J. How effective are WEEE policies in China? A strategy evaluation through a PMC-index model with content analysis. Environmental Impact Assessment Review, 2025, Vol. 110, 107672. https://doi.org/10.1016/j.eiar.2024.107672. 34. Liu F., Tang J., Rustam A., Liu Z. Evaluation of the central and local power batteries recycling policies in China: A PMC-Index model approach. Journal of Cleaner Production, 2023, Vol. 427, 139073. https://doi.org/10.1016/j.jclepro.2023.139073. 35. Aletras N., Tsarapatsanis D., Preojiuc-Pietro D., Lampos V. Predicting judicial decisions of the European Court of Human Rights: a Natural Language Processing Perspective. PeerJ Computer Science , 2016, 2:e93. https://doi.org/10.7717/peerj-cs.93. 36. Kaufman A., Kraft P., Sen M. Machine Learning Text Data and Supreme Court Forecasting. Aaron R. Kaufman official site, 2017, pp. 1-15. Available at: https://www.aaronrkaufman.com/wp-content/uploads/2016/06/ Supreme_Court_Prediction_ v17.pdf. 37. Liu Z., Chen H. A predictive performance comparison of machine learning models for judicial cases. IEEE Symposium Series on Computational Intelligence (SSCI), 2017, pp. 1-6. https://doi.org/10.1109/SSCI.2017.8285436. 38. Thomas A., Varghese A. K., Alex P. L., Mathews B. J., Dhanya L. K. Analysis of Machine Learning Algorithms for Predicting the Suitable Career After High School. Proceedings of Third International Conference on Communication, Computing and Electronics Systems, 2022, Vol. 844, pp. 89-105. https://doi.org/10.1007/978-981-16-8862-1_7. 39. Fauzer V. V., Smirnov A. V., Lytkina T. S., Fauzer G. N. Vyzovy i protivorechiya v razvitii Severa i Arktiki: demograficheskoe izmerenie [Challenges and contradictions in the development of the North and the Arctic: Demographic dimension]. Arktika: ekologiya i ekonomika [Arctic: Ecology and Economy], 2022, Vol. 12, no. 1, pp. 111-122. https://doi.org/10.25283/2223-4594-2022-1-111-122. (In Russ.). 40. Gres R. A., Zhikharevich B. S., Pribyshin T. K. Arkticheskaya spetsifika v strategiyakh arkticheskikh munitsipalitetov [Arctic specific in Arctic Municipal Strategies]. Izvestiya Russkogo geograficheskogo obshhestva [Proceedings of the Russian Geographical Society], 2022, Vol. 154, no. 1, pp. 3-16. https://doi.org/10.31857/S0869607122010037. (In Russ.). 41. Boyarsky K., Kanevsky E. Nelokal'nye semanticheskie svyazi v russkoyazychnykh tekstakh [Features of non-local semantic links in Russian texts]. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki [Scientific and Technical Journal of Information Technologies, Mechanics and Optics], 2018, Vol. 18, no. 5, pp. 863-869. https://doi:10.17586/2226-1494-2018-18-5-863-869. (In Russ.). 42. Boyarsky K. K., Kanevsky E. A. Semantiko-sintaksicheskii parser SEMSIN [SEMSIN semantic and syntactic parser]. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki [Scientific and Technical Journal of Information Technologies, Mechanics and Optics], 2015, Vol. 15, no. 5, pp. 869-876. https://doi:10.17586/2226- 1494-2015-15-5-869-876. (In Russ.). © Волков А. Д., Рослякова Н. А., Каневский Е. А., Боярский К. К., 2025 24

RkJQdWJsaXNoZXIy MTUzNzYz