МурманшельфИнфо. 2009, N 1 (6).
Àëüòåðíàòèâíûå âàðèàíòû õðàíåíèÿ ÑÎ 2 . (Èñòî÷íèê IPCC 2005). Alternatives for CO 2 storage. (Source IPCC 2005). Àëüòåðíàòèâû ãåîëîãè÷åñêîãî çàõîðîíåíèÿ ÑÎ 2 1. Îïóñòîøåííûå íåôòåãàçîâûå ñëîè 2. Èñïîëüçîâàíèå ÑÎ 2 äëÿ óâåëè÷åíèÿ äîáû÷è íåôòè 3. Ãëóáîêèå íåèñïîëüçîâàííûå ñîëÿíûå âîäîíàñûùåííûå ñêàëüíûå ðåçåðâóàðû. 4. Ãëóáîêèå íåïîäëåæàùèå îòðàáîòêå óãîëüíûå ñëîè 5. Èñïîëüçîâàíèå ÑÎ 2 äëÿ óâåëè÷åíèÿ èçâëå÷åíèÿ óãîëüíîãî ìåòàíà 6. Áàçàëüòû, íåôòåíîñíûå ñëàíöû, ïóñòîòû Äîáûâàåìûå íåôòü è ãàç Product oil and gas Çàêà÷åííûå ÑÎ 2 Injected ÑÎ 2 Õðàíÿùèéñÿ ÑÎ 2 Stored ÑÎ 2 Geological Storage Options for CO 2 1. Depleted oil and gas reserved 2. Use of CO 2 in enhanced oil recovery 3. Deep unused saline water-saturated reservoir rocks 4. Deep unmineable coal seams 5. Use of CO 2 in enhanced coal bed methane recovery 6. Other suggested options (besalts, oil shales, cavities) Хранение CO 2 Íåôòÿíûå è ãàçîâûå ðåçåðâóàðû, êîòîðûå â öåëîì õîðîøî èçó÷åíû, ñ÷èòàþòñÿ áåçîïàñíûìè äëÿ õðàíåíèÿ CO 2 , ïîñêîëüêó îíè ñîäåðæàëè íåôòü, ãàç è äàæå CO 2 ìèëëèîíû ëåò. Ïðè çàêà÷èâàíèè ÑÎ 2 â ïîäõîäÿùèå íå- ôòåãàçîâûå ìåñòîðîæäåíèÿ íà ãëóáèíû áîëåå 800 ìåò- ðîâ, ðàçëè÷íûå ôèçè÷åñêèå è ãåîõèìè÷åñêèå óëàâëèâàþ- ùèå ìåõàíèçìû íå ïîçâîëÿò åìó âûéòè íà ïîâåðõíîñòü. Îñíîâíûì ôèçè÷åñêèì ìåõàíèçìîì óëàâëèâàíèÿ ÿâëÿ- åòñÿ íàëè÷èå ïåðåêðûâàþùåé ïîðîäû. Çàêà÷èâàíèå CO 2 â íåêîòîðûå èç ýòèõ ðåçåðâóàðîâ ïîçâîëèò âîçîáíîâèòü äàëüíåéøåå ïðîèçâîäñòâî íåôòè/ ãàçà, îñòàâøåãîñÿ â ðåçåðâóàðàõ. Ïðèáûëü îò äîïîëíè- òåëüíîé íåôòè/ãàçà ìîæåò áûòü èñïîëüçîâàíà äëÿ ïîêðû- òèÿ ñòîèìîñòè õðàíåíèÿ CO 2 .  ÑØÀ óæå íà ïðîòÿæåíèè íåñêîëüêèõ ëåò èñïîëüçîâàëè ýòîò ïðîöåññ íå ñ öåëüþ õðàíåíèÿ CO 2 , à äëÿ óâåëè÷åíèÿ äîáû÷è íåôòè.  Êàíàäå çàêà÷èâàíèå êèñëîòíîãî ãàçà (îñòàòî÷íûé ïðîäóêò ïåðåðà- áîòêè ïðèðîäíîãî ãàçà, ñîñòîÿùåãî â îñíîâíîì èç CO 2 è H 2 S) â íåôòÿíûå/ãàçîâûå ïîëÿ è ãëóáîêèå ñîëåíûå âîäî- íîñíûå ãîðèçîíòû ïðàêòèêóåòñÿ ìíîãî ëåò. Ãëóáîêèå ñîëåíûå âîäîíîñíûå ãîðèçîíòû – ïîäçåì- íûå ôîðìàöèè, îáû÷íî ïåñ÷àíèêè, ñîäåðæàùèå ñîëåíóþ lorries. However, these are less attractive when large-scale CO 2 transport is the desired objective. CO 2 storage Natural oil and gas reservoirs have, on the whole, been well researched and are considered safe for storage of CO 2 as they have held oil, gas, and quite often CO 2 , for millions of years. When CO 2 is pumped into suitable oil and gas reservoirs to depths of over 800 metres, various physical and geochemical capture mechanisms can be relied on to keep carbon dioxide in place and ensure against leakage. Usually, the presence of overlying rock serves as the main confining physical mechanism. Injecting CO 2 in some of these oil and gas fields will help further develop the depleted sites and resume excavation of the oil or gas that may still be left in them. Profit turned from the extraction of the remaining oil and gas can then be used to compensate for the expenses incurred by CO 2 storage. This process has now been successfully used for a number of years in the United States exactly for the purposes of enhanced oil recovery, rather than CO 2 capture. In Canada, the sequestration of âîäó. Ýòè ôîðìàöèè ïðèñóòñòâóþò â áîëüøèíñòâå ñòðàí è èìåþò ãðîìàäíûé ïîòåíöèàë äëÿ õðàíåíèÿ. Îíè çà- ÷àñòóþ íàõîäÿòñÿ áëèçêî ê ïðîìûøëåííûì èñòî÷íèêàì CO 2 , îáû÷íî î÷åíü âåëèêè è èìåþò îãðîìíóþ âìåñòè- ìîñòü. Çàêà÷èâàíèå CO 2 â ýòè ôîðìàöèè ñõîæå ñ çàêà- ÷èâàíèåì â íåôòÿíûå è ãàçîâûå ïîëÿ. Ïåðâûé â ìèðå íîðâåæñêèé êîììåð÷åñêèé ïðîåêò Ñëåéïíåðà ïî õðàíå- íèþ CO 2 äîêàçûâàåò, ÷òî åæåãîäíîå çàêà÷èâàíèå ïðè- áëèçèòåëüíî îäíîãî ìèëëèîíà òîíí CO 2 â âîäîíîñíûé ãîðèçîíò ïîä Ñåâåðíûì ìîðåì ïîçâîëÿåò õðàíèòü CO 2 áåç óòå÷åê è â áîëüøèõ êîëè÷åñòâàõ.  ïîäçåìíûõ óãîëüíûõ ñëîÿõ, åñëè îíè ñëèøêîì òîí- êèå èëè ñëèøêîì ãëóáîêèå, èíîãäà íåâîçìîæíî ïðîèçâî- äèòü äîáû÷ó. Ê òîìó æå îíè ñîäåðæàò îïðåäåëåííîå êî- ëè÷åñòâî ìåòàíà. Ïðè çàêà÷èâàíèè CO 2 â óãîëüíûé ïëàñò áûëî îòìå÷åíî, ÷òî CO 2 «ïðèëèïàåò» ê óãëþ ëó÷øå, ÷åì ìåòàí, è ìåòàí ïðè ýòîì âûñâîáîæäàåòñÿ. Óãîëüíûé ïëàñò ñòàíîâèòñÿ èñòî÷íèêîì ïðèðîäíîãî ãàçà, êîòîðûé ìîæåò áûòü ïðîäàí äëÿ ïîêðûòèÿ ñòîèìîñòè õðàíåíèÿ CO 2 . Опыт использования технологии УХУ Íà ñåãîäíÿ îñóùåñòâëÿåòñÿ òðè ïðîåêòà õðàíåíèÿ CO 2 ïðîìûøëåííîãî ìàñøòàáà: ïðîåêò Ñëåéïíåðà â ìîðñêîé ñîëåíîñíîé ôîðìàöèè â Íîðâåãèè, ïðîåêò Óýéáåðíà â Êàíàäå è ïðîåêò Èí-Ñàëàõà íà ãàçîâîì ìåñòîðîæäåíèè â Àëæèðå.  äàëüíåéøåì ïëàíèðóåòñÿ ðåàëèçàöèÿ ïîäîáíûõ ïðîåêòîâ ïî âñåìó ìèðó. acid gas – a residual product of reprocessing natural gas, which consists predominantly of CO 2 and H 2 S – in oil and gas fields and deep saline aquifers has also been practiced for many years now. Deep saline aquifers are underground formations, usually deep sands, which contain saline water. As sites with an enormous potential for the geological storage of CO 2 , these formations are available in most countries, are often found close to industrial sources of CO 2 production, are usually quite considerable in size, and have, therefore, sufficient capacity to hold enormous amounts of CO 2 . Technologically, sequestering CO 2 in these formations is similar to injecting carbon dioxide into oil and gas fields. The Norwegian project Sleipner, an offshore gas field in the middle of the North Sea, is the world’s first commercial CO 2 storage project. At this site, around one million tonnes of CO 2 is pumped yearly into a saline aquifer under the sea, which clearly demonstrates that large amounts of CO 2 can be efficiently sequestered without leakages using deep saline aquifer storage technology. Underground coal seams sometimes make coal recovery difficult or impossible if they are too thin or are located at depths that are too great. Additionally, they contain certain amounts of methane gas. It has been shown that when injecting CO 2 into unminable coal seams, CO 2 “binds” more easily with coal than methane does, and as such, it releases methane contained in the seams. This means that these coal seams can be used as sources of ìàðò 2009 ¹ 1 (6) ÌóðìàíøåëüôÈíôî 63
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz