МурманшельфИнфо. 2009, N 1 (6).
CO 2 capture technologies CO 2 capture means creating a concentrated high- pressurised flow of CO 2 which will then be easy to transport by pipelines or ship to a storage location. There is a number of various CO 2 capture systems, which generally fall into three groups: post-combustion, pre-combustion, and so- called oxy-fuel systems, where fossil fuel is burnt using pure oxygen rather than air. Post-combustion CO 2 capture systems separate CO 2 from flue gas that is generated as a result of burning primary fossil fuel. In these systems, liquid absorbents are used to capture the small amounts of CO 2 present in the flue gas out of the exhaust gas stream, in which nitrogen is the main component, as it comes from air. Pre-combustion systems process primary fuel in a reactor using an air- or oxygen-saturated flow to create a mix that consists predominantly of carbon monoxide and hydrogen gas. This synthesis gas can then be reformed into CO 2 and hydrogen before separated into a pure CO 2 gas stream and hydrogen stream. As for the oxy-fuel systems, oxygen, rather than air, is used when burning primary fuel to generate exhaust gas that would be made of, predominantly, water steam and CO 2 . This technology provides for higher concentrations of CO 2 in flue gas (over 80% of the total amount of flue gas). Water steam is then removed through cooling and gas flow compression. Thanks to these technologies, between 85% and 95% of all CO 2 that is processed in the capture system can be successfully captured. Технология улавливания CO 2 Öåëü óëàâëèâàíèÿ ÑÎ 2 çàêëþ÷àåòñÿ â ñîçäàíèè êîí- öåíòðèðîâàííîãî ïîòîêà ÑÎ 2 âûñîêîãî äàâëåíèÿ, êîòî- ðûé ìîæíî ëåãêî òðàíñïîðòèðîâàòü ïî òðóáîïðîâîäàì èëè ñóäàìè ê ìåñòó õðàíåíèÿ. Ñóùåñòâóþò ðàçíûå òèïû ñèñòåì óëàâëèâàíèÿ ÑÎ 2 : ïîñëå ñæèãàíèÿ, äî ñæèãàíèÿ è ñî ñæèãàíèåì îáîãàùåííîãî êèñëîðîäîì òîïëèâà. Ñèñòåìû óëàâëèâàíèÿ ïîñëå ñæèãàíèÿ îòäåëÿþò ÑÎ 2 îò äûìîâûõ ãàçîâ, îáðàçóþùèõñÿ â âîçäóõå â ðåçóëüòàòå ñæèãàíèÿ ïåðâè÷íîãî òîïëèâà.  ýòèõ ñèñòåìàõ îáû÷íî èñ- ïîëüçóåòñÿ æèäêèé ðàñòâîðèòåëü äëÿ çàõâàòà íåáîëüøîé äîëè ÑÎ 2 , ïðèñóòñòâóþùåãî â ïîòîêå äûìîâîãî ãàçà, â êî- òîðîì ãëàâíîé ñîñòàâëÿþùåé ÿâëÿåòñÿ àçîò (èç âîçäóõà).  ñèñòåìàõ óëàâëèâàíèÿ äî ñæèãàíèÿ îñóùåñòâëÿåò- ñÿ îáðàáîòêà ïåðâè÷íîãî òîïëèâà â ðåàêòîðå ñ ïîòîêîì, íàñûùåííûì âîçäóõîì èëè êèñëîðîäîì, äëÿ ñîçäàíèÿ ñìåñè, ñîñòîÿùåé ãëàâíûì îáðàçîì èç îêèñè óãëåðîäà è âîäîðîäà. Ïîñëå ýòîãî ïîëó÷èâøàÿñÿ ñìåñü ìîæåò áûòü ðàçäåëåíà íà ãàçîâûé ïîòîê ÑÎ 2 è ïîòîê âîäîðîäà.  ñèñòåìàõ ñæèãàíèÿ ñ îáîãàùåíèåì òîïëèâà êèñëî- ðîäîì âìåñòî âîçäóõà äëÿ ñæèãàíèÿ ïåðâè÷íîãî òîïëèâà èñïîëüçóåòñÿ êèñëîðîä äëÿ ïîëó÷åíèÿ äûìîâîãî ãàçà, êîòîðûé ñîñòîèò ãëàâíûì îáðàçîì èç âîäÿíîãî ïàðà è ÑÎ 2 . Áëàãîäàðÿ ýòîìó, äûìîâîé ãàç õàðàêòåðèçóåòñÿ âû- ñîêèìè êîíöåíòðàöèÿìè ÑÎ 2 (áîëåå 80 % ïî îáúåìó). Çàòåì âîäÿíîé ïàð óäàëÿåòñÿ ïîñðåäñòâîì îõëàæäåíèÿ è êîìïðåññèè ãàçîâîãî ïîòîêà. Áëàãîäàðÿ èìåþùåéñÿ òåõíîëîãèè, óëàâëèâàåòñÿ ïîðÿäêà 85 – 95 % ÑÎ 2 , ïðî- øåäøåãî ÷åðåç óëîâèòåëü. Ñèñòåìà óëàâëèâàíèÿ è õðàíåíèÿ ÑÎ 2 . (Èñòî÷íèê IPCC). CO 2 Capture and Storage. CO 2 CO 2 Ñáîð ÑÎ 2 CO 2 capture Òåõíîëîãèÿ óïðàâëåíèÿ è õðàíåíèÿ óãëåêèñëîãî ãàçà Example of utilization of CO2 (capture, storage, industry) Î÷èùåííûé ãàç Cleaned gas Æèäêèé ãàç Flue gas Õðàíåíèå CO 2 CO 2 storage Èñòî÷íèêè CO 2 : Ýëåêòðîñòàíöèè Ïðîìûøëåííîñòü Í 2 ïðîèçâîäñòâà CO 2 source: Power plant Industry H 2 production Òðàíñïîðòèðîâêà CO 2 CO 2 transport Çàêà÷èâàíèå óãëåêèñëîãî ãàçà â ãàçî- è íåôòåñêâàæèíû - îïòèìàëüíûé ïóòü ñêîðåéøåãî ñîêðàùåíèÿ êîëè÷åñòâà ÑÎ 2 â àòìîñôåðå ÊÈÍ EOR Транспортировка CO 2 Òðóáîïðîâîäû ÿâëÿþòñÿ ïðåäïî÷òèòåëüíûì ñðåä- ñòâîì äëÿ òðàíñïîðòèðîâêè çíà÷èòåëüíûõ îáúåìîâ ÑÎ 2 íà ðàññòîÿíèÿ äî 1 000 êì. Äëÿ îáúåìîâ ìåíåå íåñêîëüêèõ ìèëëèîíîâ òîíí â ãîä èëè äëÿ òðàíñïîð- òèðîâêè ÷åðåç áîëåå ïðîòÿæåííûå ìîðñêèå ïðîñòðàí- ñòâà âûãîäíåå èñïîëüçîâàòü ñóäà. Òðàíñïîðòèðîâêà ÑÎ 2 ïî òðóáîïðîâîäó ÿâëÿåòñÿ òåõíîëîãèåé ðàçâèòîãî ðûíêà.  ÑØÀ ïî òðóáîïðîâîäàì ïðîòÿæåííîñòüþ áî- ëåå 2 500 êì òðàíñïîðòèðóåòñÿ ñâûøå 40 ìèëëèîíîâ òîíí ÑÎ 2 â ãîä. Òðàíñïîðòèðîâêà ÑÎ 2 ñóäàìè, àíàëîãè÷íàÿ ïåðå- âîçêå ñæèæåííûõ íåôòÿíûõ ãàçîâ, ÿâëÿåòñÿ ýêîíîìè÷å- ñêè îñóùåñòâèìîé ïðè îïðåäåëåííûõ óñëîâèÿõ, îäíàêî â íàñòîÿùåå âðåìÿ îíà îñóùåñòâëÿåòñÿ â íåçíà÷èòåëü- íûõ ìàñøòàáàõ ââèäó îãðàíè÷åííîãî ñïðîñà. ÑÎ 2 ìîæåò òàêæå ïåðåâîçèòüñÿ ïî æåëåçíîé äîðîãå èëè â àâòîöè- ñòåðíàõ, íî ýòè âàðèàíòû ìåíåå ïðèâëåêàòåëüíû äëÿ êðóïíîìàñøòàáíîé òðàíñïîðòèðîâêè ÑÎ 2 . CO 2 transport Pipelines are a preferred means of transporting significant amounts of CO 2 over distances of up to 1,000 kilometres. Other transport means, such as shipping by sea, may be more attractive economically – if such an option is acceptable in principle – when transporting volumes of less than several million tonnes of CO 2 per year or transporting over larger distances involving oceanic routes. Transporting CO 2 through pipelines is a technology characteristic of a developed market, such as that of the United States, where over 40 mln. tonnes of CO 2 is pumped yearly through pipelines stretching over a distance of as many as 2,500 kilometres. Provided certain circumstances are in place, transporting CO 2 in ships – done in much the same way as shipping liquefied petroleum gas – becomes a viable economic option. However, at present it is only available to a limited extent due to an underdeveloped demand for such services. Carbon dioxide can also be transported by rail or in tank Òåõíîëîãèè Technologies 62 ìàðò 2009 ¹ 1 (6) ÌóðìàíøåëüôÈíôî
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz