Physics of auroral phenomena : proceedings of the 38th annual seminar, Apatity, 2-6 march, 2015 / [ed. board: A. G. Yahnin, N. V. Semenova]. - Апатиты : Издательство Кольского научного центра РАН, 2015. - 189 с. : ил., табл.

The electric potential distribution in the disturbedpolar ionosphere In contrast, the ground-based magnetometer network allows us to obtain the electric potential map for a specified time without averaging, these results, in turn, contain their own error of the MIT method. The main findings of this study are as follows. 1. Both methods give the expected and qualitatively similar large-scale, two-vortex systems of the ionospheric convection with similar values of the cross polar cap potential drop, UPc ~ (42-46) kV. 2. The method, based on SuperDARN measurements data, cannot detect the irregular component in the electric potential distributions, whereas the MIT method reflects the development of the corresponding mesoscale convection vortices during substorms. Even for the considered weak substorm the irregular component of about 20 kV is observed, which is comparable to the contribution of the regular component. Apparently, the two above methods could be an important addition to each other. Acknowledgments. We thank the ISTP SB RAS MIT group members for the assistance in the calculations. The AE index was obtained through the Website of the World Data Center for Geomagnetism, Kyoto. We are grateful to Pis of the CANOPUS, INTERMAGNET, GIMA, MACCS, IMAGE and SuperDARN international projects and of magnetic networks in Arctic and the Antarctic (the Shafer Institute of Cosmo-Physical Research and Aeronomy SB RAS, Arctic and Antarctic Research Institute, and DMI), and individual magnetic observatories for providing magnetic data used in this study. SL, VVM and VMM are supported by the Russian Foundation for Basic Research under Grants 14-05-91165 and 15-05-05561; OB is supported by FSR program No.II.12.2.3. References Angelopoulos, V., et al. (2008), Tail reconnection triggering substorm onset, Science, .52/(5891), 931-935, doi: 10.1126/science. 1160495. Cousins, E. D. P., and S. G. Shepherd (2010), A dynamical model of high-latitude convection derived from SuperDARN plasma drift measurements, J. Geophys. Res., 115( A12), A12329, doi:10.1029/201OjaO16017. Cousins, E. D. P., T. Matsuo, and A. D. Richmond (2013), Mesoscale and large-scale variability in high-latitude ionospheric convection: Dominant modes and spatial/temporal coherence, J. Geophys. Res. Space Physics, //§(12), 7895-7904, doi:10.1002/2013JA019319. Kauristie, К., V. A. Sergeev, M. Kubyshkina, T. 1. Pulkkinen, V. Angelopoulos, T. Phan, R. P. Lin, and J. A. Slavin (2000), Ionospheric current signatures of transient plasma sheet flows, J. Geophys. Res., 105( A5), 10677-10690, doi: 10.1029/1999ja900487. Mishin, V. М., A. D. Bazarzhapov, and G. B. Shpynev (1979), Electric Fields and Currents in the Earth’s Magnetosphere, in Dynamics ofthe Magnetosphere, edited by S. I. Akasofu, pp. 249-268, Springer Netherlands, doi:10.1007/978-94-009-9519-2_12. Mishin, V. M. (1990), The magnetogram inversion technique and some applications, Space Sci Rev, 55(1), 83-163, doi: 10.1007/ЫЮ0217429. Mishin, V. М., A. D. Bazarzhapov, Т. I. Saifudinova, S. B. Lunyushkin, D. S. Shirapov, J. Woch, L. Eliasson, H. Opgenoorth, and J. S. Murphree (1992), Different Methods to Determine the Polar Cap Area, J. Geomag. Geoelectr., 44( 12), 1207-1214, doi: 10.5636/jgg.44.1207. Mishin, V. М., С. T. Russell, Т. I. Saifudinova, and A. D. Bazarzhapov (2000), Study of weak substorms observed during December 8, 1990, Geospace Environment Modeling campaign: Timing of different types o f substorm onsets, J. Geophys. Res., 105(A\0), 23263-23276, doi:10.1029/1999ja900495. Mishin, V. М., Z. Pu, V. V. Mishin, and S. B. Lunyushkin (2013), Short-circuit in the magnetosphere-ionosphere electric circuit, Geomagnetism andAeronomy, 53(6), 809-811, doi: 10.1134/s001679321306008x. Papitashvili, V. O., and F. J. Rich (2002), High-latitude ionospheric convection models derived from Defense Meteorological Satellite Program ion drift observations and parameterized by the interplanetary magnetic field strength and direction, J. Geophys. Res., /07(А8), 1198, doi: 10.1029/200lja000264. Petrukovich, A. A., W. Baumjohann, R. Nakamura, T. Mukai, and O. A. Troshichev (2000), Small substorms: Solar wind input and magnetotail dynamics, J. Geophys. Res., 105(A9), 21109-21117, doi:10.1029/2000ja900057. Pu, Z. Y., et al. (2010), THEMIS observations of substorms on 26 February 2008 initiated by magnetotail reconnection, J. Geophys. Res., 115(A2), A02212, doi: 10.1029/2009ja014217. Ruohoniemi, J. М., and R. A. Greenwald (2005), Dependencies o f high-latitude plasma convection: Consideration of interplanetary magnetic field, seasonal, and universal time factors in statistical patterns, J. Geophys. Res., 110(A9), A09204, doi: 10.1029/2004ja010815. Shi. Y., E. Zesta, L. R. Lyons, J. Yang, A. Boudouridis, Y. S. Ge, J. M. Ruohoniemi, and S. Mende (2012), Two-dimensional ionospheric flow pattern associated with auroral streamers,/. Geophys. Res., 117(A2), A02208, doi: 10.1029/201 ljaOl 7110. Shirapov, D. S., V. M. Mishin, A. D. Bazarzhapov, and Т. I. Saifudinova (2000), Adapted dynamic model of ionospheric conductivity, Geomagnetism andAeronomy, 40( 4), 471-475. Weimer, D. R. (2005), Improved ionospheric electrodynamic models and application to calculating Joule heating rates, J. Geophys. Res., НО, A05306, doi:10.1029/2004ja010884. 23

RkJQdWJsaXNoZXIy MTUzNzYz