Physics of auroral phenomena : proceedings of the 37th Annual seminar, Apatity, 25 - 28 February, 2014 / [ed. board: A. G. Yahnin, N. V. Semenova]. - Апатиты : Изд-во Кольского научного центра РАН, 2014. - 125 с. : ил., табл.

А. V. Artemyev et al. Mourenas et al., 2013). Thus, shift of the plasma density minimum should influence significantly on impact of magentosonic waves on electron scattering. In conclusion, in this paper we have demonstrated that the plasma distribution along the field lines can have minimum shifted relative to the geomagnetic equator. This shift results in a modification of electron resonant interaction with whistler waves in the Earth radiation belts at L~ 2-3. We have found the corresponding increase of the pitch-angle diffusion rates in the vicinity of loss-cone for -IMeV electrons. Acknowledgements. Work of A.A.V. was supported by the grant MK-1781.2014.2. Work of K.G.A. and V.M.I. was partially supported by Programm 22 of the Presidium of the Russian Academy of Sciences. References Agapitov, 0., A. Artemyev, V. Krasnoselskikh, Y. V. Khotyaintsev, D. Mourenas, H. Breuillard, M. Balikhin, and G. Rolland (2013), Statistics of whistler-mode waves in the outer radiation belt: Cluster STAFF-SA measurements, J. Geophys. Res. Space Physics, 118, 3407-3420, doi:10.1002/jgra.50312. Artemyev, A., D. Mourenas, O. Agapitov, and V. Krasnoselskikh (2013), Parametric validations of analytical lifetime estimates for radiation belt electron diffusion by whistler waves, Ann. Geophys., 31, 599-624, doi:10.5194/angeo-31-599-2013. Bezrukikh, V.V., et al. (1998) Investigation of Low-Energy Plasma in the Earth’s Magnetosphere onboard the Tail and Auroral Probes: Instrumentation and Preliminary Results, Cosmic Res., vol. 36, no. 1, pp. 30-38. Denton, R.E., K. Takahashi, I. A. Galkin, P. A. Nsumei, X. Huang, B. W. Reinisch, R. R. Anderson, М. K. Sleeper, and W. J. Hughes (2006), Distribution of density along magnetospheric field lines, J. Geophys. Res., Il l , A04213, doi: 10.1029/2005JA011414. Gallagher, D.L., Craven, P.D., and Comfort, R.H. (2000) Global Core Plasma Model, J. Geophys. Res. , vol. 105, pp. 18819-18883. Glauert, S. A., and R. B. Home (2005), Calculation of pitch angle and energy diffusion coefficients with the PADIE code, J. Geophys. Res.,110, A04206, doi:10.1029/2004JA010851. Kennel, C. F., and H. E. Petschek (1966), Limit on stably trapped particle fluxes, J. Geophys. Res., 71, 1-28. Kotova, G.A., Bezrukikh, V.V., Verigin, M.I., and Legen, L.A. (2002) Temperature and Density Variations in the Dusk and Dawn Plasmasphere as Observed by INTERBALL TAIL in 1999-2000, Adv. Space Res., vol. 30, no. 7, pp. 1831-1834. Kotova, G.A. (2007) Earth’s Plasmosphere: Current State of Studies, Geomagn. Aeron., vol. 47, no. 4, pp. 409-422. Lyons, L.R. (1974), Pitch angle and energy diffusion coefficients from resonant interactions with ion-cyclotron and whistler waves, J. Plasma Phys., 12, 417-432, doi:10.1017/S002237780002537X. Lyons, L.R. and Williams, D.J. (1984) Quantitative aspects of magnetospheric physics. Reidel Publishing Company, Dordrecht - Boston - Lancaster. Meredith, N.P., R. B. Home, R. M. Thome, and R. R. Anderson (2003), Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation belt, Geophys. Res.Lett., 30, 1871, 10.1029/2003GL017698. Meredith, N.P., R. B. Home, S. A. Glauert, and R. R. Anderson (2007), Slot region electron loss timescales due to plasmaspheric hiss and lightning-generated whistlers, J. Geophys. Res., 112, A08214, doi:10.1029/2007JA012413. Meredith, N.P., R. B. Home, S. A. Glauert, D. N. Baker, S. G. Kanekal, and J. M. Albert (2009), Relativistic electron loss timescales in the slot region, J. Geophys. Res., 114, A03222, doi:10.1029/2008JA013889. Mourenas, D., A. V. Artemyev, О. V. Agapitov, and V. Krasnoselskikh (2013), Analytical estimates of electron quasi-linear diffusion by fast magnetosonic waves, J. Geophys. Res. Space Physics, 118, 3096-3112, doi: 10.1002/jgra.50349. Mourenas, D., A. V. Artemyev, О. V. Agapitov, and V. Krasnoselskikh (2014), Consequences of geomagnetic activity on energization and loss of radiation belt electrons by oblique chorus waves, J. Geophys. Res, 119, 2775-2796, doi: 10.1002/2013JA019674. Ni, B., Y. Y. Shprits, R. H. W. Friedel, R. M. Thome, M. Daae, and Y. Chen (2013), Responses of Earth’s radiation belts to solar wind dynamic pressure variations in 2002 analyzed using multi-satellite data and Kalman filtering, J. Geophys. Res. Space Physics, 118, 4400 4414, doi:10.1002/jgra.50437. Orlova К , M. Spasojevic, and Y. Shprits (2014) Activity dependent global model of electron loss inside the plasmasphere, Geophys. Res. Lett., doi: 10.1002/2014GL060100. Ozhogin, P.,J. Tu, P. Song, and B.W. Reinisch (2012), Field-aligned distribution of the plasmaspheric electron density: An empirical model derived from the IMAGE RPI measurements,/. Geophys. Res., 117, A06225, doi: 10.1029/2011JA017330. Sheeley, B. W., М. B. Moldwin, H. K. Rassoul, and R. R. Anderson (2001), An empirical plasmasphere and trough density model: CRRES observations, J. Geophys. Res., 106, 25,631-25,642, doi:10.1029/2000JA000286. Shprits, Y. Y., A. Runov, and B. Ni (2013), Gyro-resonant scattering of radiation belt electrons during the solar minimum by fast magnetosonic waves, J. Geophys. Res., 118, 648-652, doi:10.1002/jgra,50108. Trakhtengerts, V. Y. (1966), Stationary states of the Earth’s outer radiation zone, Geomagn. Aeron., 6, 827-836. Trakhtengerts, V.Y. and Rycroft, M.J. (2008) Whistler and Alfven Mode Cyclotron Masers in Space. Published by Cambridge University Press, Cambridge, UK. Verigin, M.I., G.A. Kotova, V.V. Bezrukikh, and O.S. Aken’tieva (2012) Restoration of the Proton Density Distribution in the Earth’s Plasmasphere from Measurements along the INTERBALL-1 Satellite Orbit. Geomagnetism and Aeronomy, Vol. 52, No. 6, pp. 725-72 58

RkJQdWJsaXNoZXIy MTUzNzYz