Physics of auroral phenomena : proceedings of the 36th Annual seminar, Apatity, 26 February – 01 March, 2013 / [ed. board: A. G. Yahnin, A. A. Mochalov]. - Апатиты : Издательство Кольского научного центра РАН, 2013. - 215 с. : ил., табл.

Т. V Kozelova and В. V. Kozelov 3. Discussion In terms of the magnetotail dynamics, substorm initiation models are often grouped into two opposing types: the inside-out and outside-in models. Fig.4 represents these models schematically as it was shown in [Ohtani, 2004]. In the inside-out model (Fig. 4a), CD takes place in the near-Earth region and launches a rarefaction wave tailward. This rarefaction wave makes a local magnetic configuration more stretched in the midtail and sets up a favorable condition for a NENL form. The other model, the outside-in model (Fig. 4b), puts the NENL in the midtail region as the first process. In this model the fast earthward flow is considered as a possible trigger for the CD disturbance in the near-Earth plasma sheet. In short, the NENL model predicts the earthward fast mode wave in the near-Earth region before the CD. Our analysis show: (i) the absence of a fast earthward plasma flow; (ii) tailward expansion of the CD (simulated equivalent eastward current djE ) with the velocity -320 km/s [ Kozelova and Kozelov, 2012]; (iii) the presence of the slow magnetosonic mode and the absence of the fa st magnetosonic mode wave before the substorm onset, and (iiii) the sharp ion pressure drop during substorm onset. These observed characteristics of disturbance are consistent with the near-Earth initiation CD model [Lui, 1991] and the inside-out model for the present substorm. Fig. 4. Schematic diagram for two substorm initiation model (as was shown by Ohtani, 2004). (a) The inside- out model, when a rarefaction wave is a trigger of the NENL. (b) The out-inside model with the earthward fast mode wave. Numbers 1-4 present, the time sequence of disturbances 4.Conclusion We present observations, which are consistent with the ballooning mode signatures in Jan 6, 2008 event at {X,Y,Z) = (-6.3, 2.17, -1.8) Re in the near-Earth magnetotail. The penetration of the hot electron plasma sheet to the region of trapped energetic ion is a 'pre­ condition' for the substorm onset in the pre-midnight sector of magnetosphere. In the end of the substorm growth phase, three boundaries become steeper and 16 converge: the convection boundary for 10-keV electrons, the -2 9 keV ion isotropy boundary and the boundary o f transition between different configurations o f the magnetic field. This convergence leads to exposure one more boundary, namely, a boundary between adiabatic and non-adiabatic ion motion, which is very important for non-linear developing of plasma instability. The observed variations near substorm onset are consistent the standing Alfven waves coupled to slow magnetosonic mode. Our analysis supports the idea about the ballooning instability as a mechanism associated with the initiation of substorm onset. Acknowledgements. The paper is supported by Program 22 of Presidium o f RAS. Authors thank V. Angelopoulos, C.W. Carlson and J. McFadden at UCB, NASA, NAS5-02099 and CDAWeb for THEMIS-C satellite data, Loparskaya observatory of PGIKSC RAS for data of all-sky camera. References Cheng, C. Z., and A. T. Y. Lui (1998), Ceophys. Res. Lett., 25(21), 4091-4095, doi:10.1029/1998GL900093. Cladis, J. B. (1971), J. Geophys. Res., 76, 2345-2356. Hones, E. W. (1979), Space Sci. Rev., 23, 393-410. Holter, О., C. Altman, A. Roux et al., (1995), J. Geophys. Res., 100, A10, 19109-19119. Kozelova, Т. V., В. V. Kozelov (2012), THEMIS observations of substorm intensification near inner edge o f the plasma sheet, Proceedings o f XXXV Apatity seminar "Physics o f auroral phenomena", Apatity, p. 21-25. Kozelova, Т. V., В. V. Kozelov, and L. L. Lazutin (2004), Adv. Space Res., 33, 774-779. Kozelova, Т. V., L. L. Lazutin, В. V. Kozelov et al., (2006), Ann. Geophys., 24, 1957-1968. Kozelova, Т. V., М. I. Pudovkin, L. L.Lazutin et al., (1986), Geomagnetism and Aeronomy, 26, 4, 621-627. Lui, A. T. Y. (1991), J. Geophys. Res., 96, 1849-1856, doi:10.1029/90JA02430. Newell, P. Т., Feldstein, Ya. I., Galperin, Yu. I. and Meng, C.-I. (1996a), J. Geophys. Res., 101, 10737-10748. Newell, P. Т., Feldstein, Ya. I., Galperin, Yu. I. and Meng, C.-l. (1996b), J. Geophys. Res., 101, 17419-17421. Newell P. Т., V. A. Sergeev, G. R. Bikkuzina, S. Wing (1998), J. Geophys. Res., 103, A 3 ,4739-4745. Ohtani, S., K. Takahashi, L. J. Zanetti, T. A. Potemra, R. W. McEntire, and T. Iijima (1992b), , J. Geophys. Res., 97, 19311- 19324, doi:10.1029/92JA01832. Ohtani, S., Space Science Reviews 113: 77-96, 2004. Roux, A. (1985), Proc. ESA Workshop on Future Missions in Solar, Heliospheric nd Space Plasma Physics, Gamisch-Partenkirchen, Germany, ESA SP-235, 151-159. Roux, A., S. Perraut, P. Robert, A. Morane, A. Pedersen, A. Korth, G. Kremser, B. Aparicio, D. Rodger, and R. Pellinen (1991), J. Geophys. Res., 96, 17697-17714, doi: 10.1029/91JA01106. Saito, М. H., Y. Miyashita, M. Fujimoto, I. Shinohara, Y. Saito, and T. Mukai (2008b), J. Geophys. Res., 113, A06201,doi: 10.1029/2007JA012778. Sauvaud J.-A. and J. R. Winckler (1980), J. Geophys. Res., 85( A5), 2043-2056. Sergeev, V. А., М. V. Maikov, and K. Mursula (1993), J. Geophys. t o . , 98, 7609-7620. Sergeev, V. A., E. M. Sazhina, N. A. Tsyganenko et al. (1983), Planet. Space Sci., 31, 1147-1155. Speiser, T. W. (1965), J. Geophys. Res., 70, 17,4219-4226. Voronkov, I., E. F. Donovan, and J. C. Samson (2003), J. Geophys. Res., 108 (A2), 1073, doi: 10.1029/2002JA0093 Walker R. J., K. N. Erickson, R. L. Swanson, and J. R. Winckler (1976), J. Geophys. Res., 81( 31), 5541-5550 OUTSIDE-*IN

RkJQdWJsaXNoZXIy MTUzNzYz