Physics of auroral phenomena : proceedings of the 35th Annual seminar, Apatity, 28 Februaru – 02 March, 2012 / [ed. board: A. G. Yahnin, A. A. Mochalov]. - Апатиты : Издательство Кольского научного центра РАН, 2012. - 187 с. : ил., табл.

М. V. Klimenko et al. As the ionospheric observation data source we used the ionosonde data of Irkutsk, Kaliningrad, Norilsk, Palmas and Sao Jose dos Campos to allow us to compare the ionospheric response to the storm event at different latitudes and longitudes. Comparison of model results with observational data (Fig. 2) shows good (some time qualitative and some time quantitative) agreement of ionospheric disturbances caused by storm on May 2-3. It is visible that CPCP dependence from IMF changes allows us to reproduce better foF2 values and their disturbances. The foF2 values obtained with use the empirical model by Zhang and Paxton (2008) are more close to observations then fo F l values obtained with use Vorobjov and Yagodkina (2005, 2007) model. However, Vorobjov and Yagodkina (2005, 2007) model allows us to reproduce better foF l disturbances during geomagnetic storm. It is important to note that the most visible disagreement between model and observation are seen above Norilsk station. Summary 1. In the given research we investigated the influence of the model input parameters (such as cross-polar cap potential, region 2 field-aligned current and high-energy particle precipitation) on ionospheric effects of geomagnetic storm on 2-3 May 2010. 2. Comparison of model calculation results with experimental data for different mid- and low- latitude ionospheric stations reveal the satisfactory qualitative agreement. We concluded that CPCP dependence from IMF changes at self-consistent model runs allows reproducing better foF l values and their disturbances during geomagnetic storm. 3. The reasons of distinctions of calculation results and observations can be idealizing approach in GSM TIP model runs of the geomagnetic field (dipole approach); the absence in model calculations the effects o f the changes in 5 Y imf ; the absence of changes of polar cap sizes during geomagnetic storm. Acknowledgements. This study is supported by grant of Program 22. The present work was done under support of the RF Ministry of Education and Science Project 14.518.11.7065. References Boyle C.B., Reiff P.H., Hairston M.R. Empirical polar cap potentials. J. Geophys. Res., 1997, Vol. 102. No. Al. 111-125, doi:10.1029/96JA01742. Cheng Z.W., Shi J.K., Zhang T.L., Dunlop М., Liu Z.X. Relationship between FAC at plasma sheet boundary layers and AE index during storms from August to October, 2001. Science China Technological Sciences (Science in China Series E), 2008, Vol. 51, No. 7, 842-848, doi: 10.1007/s 11431-008-0058-0. Feshchenko E.Yu., Maltsev Yu.P. Relations of the polar cap voltage to the geophysical activity. Physics of Auroral Phenomena: XXVI Annual Seminar (February 25-28, 2003): Proc./PGI KSC RAS. Apatity, 2003, 59-61. Iijima Т., Potemra T.A. Field-Aligned Currents in the Dayside Cusp Observed by Triad. J. Geophys. Res., 1976, Vol. 81, No. 34, 5971-5979; Kikuchi Т., Hasimoto K.K., Nozaki K. Penetration of magnetospheric electric fields to the equator during a geomagnetic storm. J. Geophys. Res., 2008, Vol. 113, A06214, doi:10.1029/2007JA012628. Klimenko M.V., Klimenko V.V., Bryukhanov V.V. Numerical Simulation of the Electric Field and Zonal Current in the Earth’s Ionosphere: The Dynamo Field and Equatorial Electrojet. Geomagn. Aeron., 2006, Vol. 46, No. 4,457—466. Klimenko M.V., Klimenko V.V., Bryukhanov V.V. Numerical modeling of the equatorial electrojet UT-variation on the basis of the model GSM TIP. Adv. Radio Sci., 2007, Vol. 5, 385-392. Klimenko M.V., Klimenko V.V., Ratovsky K.G., Goncharenko L.P. Ionospheric effects of geomagnetic storm sequence on September 9-14, 2005. Geomagn. Aeron., 201 la., Vol. 51, No. 3, 364-376. Klimenko M.V., Klimenko V.V., Ratovsky K.G., Goncharenko L.P., Sahai Y., Fagundes P.R., de Jesus R., de Abreu A.J., Vesnin A.M. Numerical modeling of ionospheric effects in the middle- and low-latitude F region during geomagnetic storm sequence of 9-14 September 2005. Radio Sci., 201 lb, Vol. 46, RS0D03, doi:10.1029/2010RS004590. Namgaladze A.A., Korenkov Yu.N., Klimenko V.V., Karpov I.V., Bessarab F.S., Surotkin V.A., Glushenko T.A., Naumova N.M. Global model of the thermosphere-ionosphere-protonosphere system. Pure and Applied Geophysics (PAGEOPH), 1988, Vol. 127, No. 2/3, 219-254. Snekvik K., Haaland S., Ostgaard N., Hasegawa H., Nakamura R., Takada Т., Juusola L., Amm O., Pitout F., Reme H., Klecke, B., Lucek E.A. Cluster observations of a field aligned current at the dawn flank of a bursty bulk flow. Ann. Geophys., 2007, Vol. 25, 1405-1415. Sojka J.J., Schunk R.W., Denig W.F. Ionospheric response to the sustained high geomagnetic activity during the March’89 great storm. J. Geophys. Res., 1994, Vol. 99, No. A ll, 21341-21352. Vorobjev V.G., Yagodkina O.I. Effect of magnetic activity on the global distribution of auroral precipitation zone. Geomagn. Aeron., 2005, Vol. 45, No. 4, 438-444. Vorobjev V.G., Yagodkina O.I. Auroral precipitation dynamics during strong magnetic storms. Geomagn Aeron 2007 Vol. 47, No 2, 185-192. Zhang Y., Paxton L.J. An empirical Kp-dependent global auroral model based on TIMED/GUVI FUV data J Atmos Solar-Terr. Phys., 2008, Vol. 70, 1231-1242. 114

RkJQdWJsaXNoZXIy MTUzNzYz