Physics of auroral phenomena : proceedings of the 34th Annual seminar, Apatity, 01 - 04 March, 2011 / [ed.: A. G. Yahnin, A. A. Mochalov]. - Апатиты : Издательство Кольского научного центра РАН, 2011. - 231 с. : ил.

Classification o fspace weather complexes taking into account characteristics ofperturbing solar stream and its geomagnetic disturbance parameters 4. Conclusions Neural network classification of space weather complexes the including representations about solar source, type of perturbing plasma stream and parameters of its geomagnetic manifestations is carry out. Here the classification neural network «layer Kohonen» for which input parameters were average value of interplanetary magnetic field vector, its southern component, temperature, dynamic pressure and electric field of solar wind is applied. Use as the input data parametrical vectors of interplanetary medium parameters has allowed to solve problem of various duration of analyzed events and to improve quality of network settings. As measure of global geomagnetic activity the Dst-index was used. The offered technique neural network classification has provided classification of space weather complexes with high efficiency (-84 %). As a result of neural network experiments eight space weather complexes is allocated. On their basis probably more detailed studying of influence on Earth magnetosphere of various solar plasma streams. The executed work opens prospects of creation short-term forecast technique of global geomagnetic conditions based on visual observations over solar activity. Acknowledgements. This work is executed at partial support under grant of the RFBR 09-05-00495, and also program Ministry of Education and Science «Development of higher school scientific potential (2009-2011, project N 10266)». References Barkhatov N .A , Levitin A .E , Revunov S.E. Complex classification of global geomagnetic disturbances // Space Research. V.44. № 6. P. 488-499. 2006. Ivanov K.G. Solar sources of interplanetary plasma streams in Earth's orbit // Geomagnetism and Aeronomy. V.36. №2. P. 19-27. 1996. Ermolaev Y .I, Nikolaeva N .S, Lodkina I.G , Ermolaev M.Y. The catalogue of the large-scale phenomena of solar wind for period 1976 - 2000 r. // Space Research. V. 47. № 2. P. 99-113. 2009. Barkhatov N. and Revunov S. Forecast and restoration of geomagnetic activity indices by using the software- computational neural network complex // Geophysical Research Abstracts. EGU General Assembly. V. 12. EGU2010-6606. 2010. Cane H. V , Richardson I. G. Interplanetary coronal mass ejections in the near-Earth solar wind during 1996-2002 // J. Geophys. Res. V. 108. №. Д4. 1156. doi:10.1029/2002JA009817. 2003. Echer E. and W.D. Gonzalez. Geoeffectiveness of interplanetary shocks, magnetic clouds, sector boundary crossings and their combined occurrence // Geophys. Res. Lett. V. 31. L09808. 10.1029/2003GL019199. 2004. Gonzalez W .D , Joselyn J.A , Kamide Y , Kroehl H.W.. Rostoker G.. Tsurutani B .T , Vasyliunas V.M. What is a geomagnetic storm? // J. Geophys. Res. V. 99. № A4. P. 5771-5792. 1994. Leamon R. J , Canfield R. C , Jones S. L , Lambkin K , Lundberg B. J , Pevtsov A. A. Helicity of magnetic clouds and their associated active regions // J. Geophys. Res. V. 109. A05106. doi:10.1029/2003JA010324. 2004. Lynch B. J , Zurbuchen Т. H , Fisk L. A , Antiochos S. K. Internal structure of magnetic clouds: Plasma and composition// J. Geophys. Res. V. 108. №. A6. 1239. doi:10.1029/2002JA009591. 2003. Tsurutani B .T , Gonzalez W.D, Gonzalez A , Tang F , Arballo J.K , Okada M. Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle // J. Geophys. Res. V. 100. № Al 1. P. 21717. 1995. Vennerstroem S. Interplanetary sources of magnetic storms: A statistical study // J. Geophys. Res. V. 106. № A12. P. 29175. 2001. Zhang J , Liemohn M. W , Kozyra J. U , Lynch B. J , Zurbuchen Т. H. A statistical study of the geoeffectiveness of magnetic clouds during high solar activity years // J. Geophys. Res. V. 109. A09101. doi:10.1029/2004JA010410. 2004. 109