Physics of auroral phenomena : proceedings of the 33rd Annual seminar, Apatity, 02 - 05 March, 2010 / [ed.: A.G. Yahnin, A. A. Mochalov]. - Апатиты : Издательство Кольского научного центра РАН, 2011. - 206 с. : ил.

M.A. Knyazeva, А.А. Namgaladze hemisphere, the winter ones - in the southern hemisphere, respectively). Their formation is caused by corresponding longitudinal variation of the meridional neutral wind at the altitudes o f the ionospheric F2-layer and geomagnetic field line geometry [Knyazeva, 2009]. The equatorial sides o f the EEDR’s abut on the equatorial anomaly remains in the night-time MLT sector. In the winter hemisphere the anomaly remains are clearly visible in the results o f the IRI-2001 and all UAM calculations. The equatorial anomaly and EEDR’s are separated by the through. In the summer hemisphere the equatorial “sides” o f the EEDR’s lie on the equatorial anomaly remains. As result these regions and equatorial anomaly are not separated. This effect takes place in summer solstice conditions under the high solar activity also. The seasonal variations of the equatorial anomaly and EEDR’s spatial structure at low latitudes are related to the corresponding variations of the dynamo origin zonal electric field (in Fig. 3, third row of the maps). The anomaly crests are clearly visible in winter (in all UAM versions) and summer conditions (by the UAM-MSIS and UAM- MSIS-HWM) in that hours by MLT, when the zonal electric field is eastward at low latitudes. The ionospheric plasma drifts under the action of this field to higher altitudes thus decreasing the ion loss rate. Accumulated plasma flows downward along the geomagnetic force lines and forms the equatorial anomaly crests. Conclusions Thus our investigation shows that the magnetospheric and thermospheric (dynamo) origin electric fields influence on the latitudinal location and form of the EEDR’s equatorial sides abutting on the equatorial anomaly remains in the night-time MLT sector. The strengthening of the magnetospheric electric field results to decrease of the steepness of the equatorial sides. The seasonal and solar activity variations o f the latitudinal location of the EEDR’s equatorial sides and equatorial anomaly are formed by corresponding variations of the neutral winds due to the dynamo action generated electric fields. References Balan N , Beiley G .J, Nair R .B , Solar and magnetic activity effects on the latitudinal variations of nighttime TEC enhancement, Annales Geophysicae, 9, 60-69,1991. Bertin F , Lepine J.P , Latitudinal variation of total electron content in the winter at middle latitudes, Radio Science, 5(6), 899-906, 1970. Bilitza D , International reference ionosphere 2000, Radio Science, 36,261-275, 2001. Brunini C , Van Zele M .A , Meza A , Gende M , Quiet and perturbed ionospheric representation according to the electron content from GPS signals, J. Geophys. Res., 108(A2), 1056, doi:10.1029/2002JA009346, 2003. Farelo A .F, Herraiz M , Mikhailov A.V. Global morphology o f night-time NmF2 enhancements // Annales Geophysicae, 20, 1795-1806,2002. Gilliland T .R , Multifrequency ionosphere recording and its significance, Proc. Inst. Radio Eng., 23, 1076, 1935. Hedin A .E , Fleming E .L , Manson A .H , Schmidlin F .J, Avery S .K , Clark R .R , Franks S .J, Fraser G .J, Tsuda T , Vial F , Vincent R .A , Empirical wind model for the upper, middle and lower atmosphere, Journal o fAtmospheric and Terrestrial Physics, 58(13), 1421-1447, 1996. Horvath I , Essex E .A , Using observations from the GPS and TOPEX satellites to investigate night-time TEC enhancements at mid-latitudes in the southern hemisphere during a low sunspot number period, Journal o f Atmospheric and Solar-Terrestrial Physics, 62, 371-391, 2000. Knyazeva M .A , The night-time F2-layer of the ionosphere and plasmasphere o f the Earth: mathematical modeling: abstract o f the Ph.D. thesis / M.A. Knyazeva. - Troitsk, Moscow region: IZMIRAN, 2009. - 18 pp. Knyazeva M .A , Namgaladze A .A , The mathematical modeling o f the forming o f the night-time electron density increases in the F2-layer of the quiet middle-latitude ionosphere and in the Earth’s plasmasphere, Proceedings o f theMSTU (in Russian), 8(1), 144-155,2005. Mikhailov A .V , Leschinskaya T.Yu, Forster M , Morphology o f NmF2neighttime increases in the Eurasian sector, Annales Geophysicae, 18, 618-628, 2000. Namgaladze A .A , Martynenko O.V, Volkov M.A, Namgaladze A .N , Yurik R .Yu, High-latitude version of the global numerical model of the Earth’s upper atmosphere, Proceedings o f the MSTU, 1(2), 23-84,1998. Picone J.M , Hedin A .E , Drob D .P , Aikin A .C , NRLMSISE-00 empirical model o f the atmosphere: Statistical comparisons and scientific is su e s,/ Geophys. Res., 107(A12), 1468, doi:10.1029/2002JA009430, 2002. Richards P .G , Torr D .G , Reinisch B .W , Gamache R .R , Wilkinson P .J, F2 peak electron density at Millstone Hill and Hobart: Comparison of theory and measurement at solar maximum, J. Geophys Res 99(A8) 15 005-15 016 1994. ’ ’ ’ ’ ’ Richards P .G , Buonsanto M .J, Reinisch B .W , Holt J , Fennelly J.A , Scali J .L , Comfort R .H , Germany G A , Spann J , Brittnacher M , Fok M .-C , On the relative importance of convection and temperature to the behavior of the ionosphere in North America during January 6-12, 1997, J. Geophys. Res., 105(A6), 12,763-12,776,2000. 1 2 0

RkJQdWJsaXNoZXIy MTUzNzYz