Сандимиров С.С. Влияние выбросов горно-металлургического комбината на химический состав донных отложений озер (Мончегорский полигон). Геоэкология. 2010, №2, с. 129-139.

ВЛИЯНИЕ ВЫБРОСОВ ГОРНО-МЕТАЛЛУРГИЧЕСКОГО КОМБИНАТА НА ХИМИЧЕСКИЙ... 139 6. Кузнецов С.И. Микрофлора озер и ее геохимиче­ ская деятельность. Л.: Наука, 1970. 440 с. 7. Материалы Мончезерской лимнологической экспе­ диции 1933 г. Л.: Гидрометеоиздат, 1935. 224 с. 8 Моисеенко Т.И., Даувальтер В.А., Родюшкин И.В. Геохимическая миграция элементов в субарктиче­ ском водоеме (на примере озера Имандра). Апати­ ты: Изд-во КНЦ, 1997. 127 с. 9. Belzile N., Morris J.R. Lake sediments: sources or sink of industrially mobilized elements? In: J.M. Gunn (Ed.) Restoration and Recovery of an Industrial Region. Springer-Verlag, 1995. P. 183-193. 10. Bowen H.J.M. Trace elements in Biochemistry. London: Acad. Press, 1966. 274 p. 11. Brooks S.J., Udachin V., Williamson B.J. Impact of copper smelting o f lakes in the southern Ural Mountains, Russia, inferred from chironomids // J. Paleolimnol. 2005. V. 33. P. 229-241. 12. Dauvalter V., Sandimirov S. Pollution of the Sediments of the Paz River basin / In: State of the environment in the Norwegian, Finnish and Russian border area / Eds. Stebel K., Chritinsen G., Derome J., Grekela I. Finnish Environment. 2007. No 6. 55 p. 13. Forstner U., Wittmann G.T.W. Metal Pollution in the Aquatic Environment. N.Y.: Springer-Verlag, 2nd revised edition, 1981. 486 p. 14. Hakanson L. An ecological risk index for aquatic pollution control - a sedimentological approach // Water Res. 1980. V. 14. P. 975-1001. 15. Norton S.A., Appleby P.G., Dauvalter V., Traaen T.S. Trace metal pollution in eastern Finnmark, Norway and Kola Peninsula, Northeastern Russia as evidences by studies of lake sediment. Oslo: NIVA-Report 41/1996, 1996. 18 p. 16. Pacyna J.M., PacynaE.G. An assessment of global and regional emissions o f trace elements to the atmosphere from anthropogenic sources worldwide // Environ. Rev. 2001. V. 4. P. 269-298. THE INFLUENCE OF MINING AND SMELTING ENTERPRISE EMISSIONS ON CHEMICAL COMPOSITION OF LACUSTRINE BED DEPOSITS (THE MONCHEGORSK SITE) V.A. Dauval’ter*, M.V. Dauval’ter**, N.A. Kashulin*, and S.S. Sandimirov* *Institute fo r Problems in Industrial Ecology o f the North, Kola Research Center, Russia Academy o f Sciences; E-mail: vladimir@inep.ksc.ru **Public Corporation “Kola Geological Informational and Laboratory Center ” (KGILC) The data are provided on the chemical composition of bottom deposits in three lakes influenced by the atmospheric emissions o f the Monchegorsk copper-nickel plant, Murmansk oblast. A nearly 70-year-long operation o f the plant contaminated the drainage areas o f surface water bodies and increased the concen­ tration of heavy metals (Ni, Cu, Co, Hg, Cd, and Pb) and As in bottom sediments. The maximal content o f heavy metals in bottom sediments and the maximal values o f contamination coefficient are registered in the smallest and shallowest Lake Malevoe located in the close vicinity to the industrial enterprise. Lake Pagel ranks second according to the contamination coefficient, as it is situated somewhat farther and aside from the prevailing wind direction. Most of the territory o f Lake Moncheozero (the largest of the investigated lakes) is situated at a substantial distance from the cobalt-nickel plant; therefore, it is specified by the lowest values of contamination coefficient almost for all heavy metals. The sedimenta­ tion rates are also found out to be different in these lakes: the lowest rate of sedimentation is registered in Lake Pagel (0.4 mm/year); the medium rate (0.7-1.0 mm/year), in Lake Moncheozero; and the highest sedimentation rate, in Lake Malevoe (about 2 mm/year). This is controlled by the area and depth of lakes as well as the areas of their drainage areas. Key words: copper-nickel plant; bottom deposits; sedimentation rate; heavy metal concentration, con­ tamination coefficient. геОЭКОЛОГИЯ. ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ № 2 2010

RkJQdWJsaXNoZXIy MTUzNzYz